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Introduction





This thesis deals with the development and analysis of dynamic hybrid fuzzy-first princi-
ples models for chemical engineering applications. These hybrid models consist of a frame-
work of dynamic mass and energy balances, supplemented with fuzzy models. The ability
of fuzzy models to describe complex behavior in a simple, transparent and straightforward
manner is used to model unknown or poorly understood physical phenomena, while the hy-
brid model structure is derived from first principles. Hybrid fuzzy-first principles models can
be attractive if a complete first principles model is difficult to derive.

In this work, a structured modeling approach for hybrid fuzzy-first principles models is pre-
sented. Different modeling tools are discussed and evaluated. The approach is illustrated by
developing hybrid models for several processes. In addition, the properties of these models
are analyzed. This will provide modelers in process engineering with insight in the applica-
bility and design of hybrid models.

1.1 Process modeling in chemical engineering

Similar to other fields of engineering, process models in chemical engineering are used
to help solving problems which benefit from a mathematical description of the system. Ap-
plications can be found in the area of research and development, design and process control.
For many applications, especially for control and optimization problems, dynamic models
are necessary; the model needs to describe the behavior of the system with respect to time.

Dynamic process modeling in chemical engineering is often based on a combination of first
principles and empirical relations. These models are interpretable, in the sense that, by an-
alyzing the model, there is a physical understanding of the process behavior. Many pro-
cess models, consisting of a framework of mass, component and energy balances describ-
ing the essential process accumulation, are available in a state-space representation. Within
this framework, phenomena such as reaction rates, mass transfer or equilibria can be ap-
proximated by static empirical relations. Often, combinations of physical phenomena are
described, when the distinction between these phenomena is difficult to make. Examples
are the Monod equation, which is used to characterize biomass growth, the overall reaction
rate equations to describe polymerization kinetics or mass transfer in distillation. Models
which combine first principles with empirical descriptions are calledgrey box models. To
make a distinction between these models and hybrid fuzzy-first principles models, this type
of models will simply be denoted withfirst principles models.

If physical interpretation is less important and a complex system needs to be described by
a simple input-output model,black box modelingcan be applied. This is a data driven ap-
proach; the observed behavior is mapped by a mathematical representation that does not have
a physical basis. Such approaches include transfer functions, which are used to approximate
the response of an output to a change in an input and time series models (Box and Jenk-
ins, 1970). Over the last decades, the use of soft computing approaches (such as artificial
neural networks or ANN’s and fuzzy logic) as a black box technique to model systems has
gained substantial interest in different fields of engineering.
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Introduction

1.2 The use of soft computing

Soft computingis a collection of methodologies that aim to exploit the tolerance for
imprecision and uncertainty to achieve tractability, robustness and low solution cost (Zadeh,
1994). The principle constituents of soft computing are fuzzy logic, neurocomputing and
probabilistic reasoning, of which genetic algorithms are a popular form. These methodologies
are also often referred to as artificial intelligence, computational intelligence or intelligent
systems.

Soft computing applications can be found in many fields, from social studies to economics to
medicine to engineering. There is an abundance of literature on soft computing. The overview
given in Stephanopoulos and Han (1996) discusses over 500 papers on soft computing appli-
cations over a period of 10 years in process engineering alone. The review distinguishes
seven different areas of application:

• Diagnosis of process operations

• Monitoring and analysis of process trends

• Intelligent control

• Heuristics and logic in planning and scheduling of process operations

• Modeling languages, simulation and reasoning

• Intelligence in scientific computing

• Knowledge based engineering design

In addition, Stephanopoulos and Han (1996) distinguish common trends in these areas that
will characterize the nature of future developments:

• Specialization to narrowly defined classes of problems

• Integration of multiple knowledge representations

• Integration of processing technologies

• Rapid expansion of industrial applications

As will be shown in this work, hybrid modeling can be seen as part of the second and third
trends. Hybrid fuzzy-first principles models combine different knowledge representations;
fuzzy logic and first principles. In addition, identification and design techniques common for
processing both representations are combined to construct hybrid models.

Fuzzy logic is the main soft computing methodology used in hybrid fuzzy-first principles
modeling. Applications of fuzzy logic with respect to process engineering cover, amongst
others, control systems, expert systems, decision support systems and classification systems
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(Dubois and Prade, 1993). Of particular interest for this work are the modeling applications,
which represent a relatively small portion of all fuzzy logic applications. Good introductions
to fuzzy modeling can be found in Babuˇska (1996) and Yager and Filev (1994).

1.3 Hybrid modeling

In chemical engineering, dynamic process modeling often involves systems, of which
physical information is limited or poorly understood. Examples of such processes are bio-
chemical processes and polymerization processes. In such cases, it is difficult to develop a
first principles model.Hybrid modelscan be a useful alternative in situations where a first
principles model is required, but is difficult to construct.

By combining black box techniques with a physical model framework, hybrid models are
obtained that combine first principles knowledge with the ability to deal with complex, poorly
understood behavior. A partial model is derived from simple physical considerations (such as
mass or energy balances), while a black box technique is used to augment the model. Hybrid
models are especially suited to describe highly nonlinear behavior over a large operating
domain. Examples are models of batch or fed-batch processes, cyclic processes or distributed
parameter processes, such as plug flow reactors.

Combining black box techniques with physical equations has received some attention since
the early 1990’s. In addition to hybrid models, such models are referred to as grey box mod-
els, semi-mechanistic models or polytopic models. In this context, Thompson and Kramer
(1994) distinguish a parallel approach, in which a model is augmented with black box tech-
niques, and a serial approach, in which black box techniques are used to describe physical
aspects of the process. As such, it has a serial connection with the physical equations of the
model.

In Thompson and Kramer (1994), a hybrid modeling approach is presented that attempts to
maximize the value of domain-specific knowledge. A hybrid model of a fed-batch bioreactor
is developed, in which an artificial neural network augments the performance of a parametric
model that describes the specific kinetic rates, such as biomass growth and substrate con-
sumption. The combined output of the parametric model and the ANN is processed by an
output model which calculates the system state. In their terminology, this is a combination of
a parallel and serial hybrid modeling approach.

Bohlin (1994) presents the development of a grey box model for a full scale steel rinsing pro-
cess. The approach is based on a so-called ”root model” that describes the known physical
behavior and which is expanded iteratively. The result is a model that combines a physical
model and an internal noise model. In Funkquist (1997), a similar grey box model is ob-
tained by reducing a complex distributed first principles model to a state space model using
orthogonal collocation and introducing stochastic disturbances.

In the serial approach, the black box part of the hybrid model calculates internal variables
that the first principles part needs. The output of the black box part has a physical meaning
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or is a measure for a physical property. In the parallel approach, model equations which have
limited validity are compensated for by the black box part, while in the serial approach, they
are replaced by the black box part. This way, the interpretation of the validity of the model
equations, both physical and black box, is much clearer. A popular approach is to combine
artificial neural networks with first principles model structures (Guptaet al., 1999; Otto and
Hartmann, 1996; Pironet al., 1997; Porruet al., 2000; Psichogios and Ungar, 1992; Qiet
al., 1999; Van Canet al., 1996; Van Canet al., 1997). In the hybrid models presented in these
papers, one or more internal variables of parameters are calculated by ANN’s and processed
by the physical part of the model. Applications include bioreactors, chemical reactors and
separation processes.

Until now, little research has been presented in which fuzzy logic is used in a hybrid modeling
context similar to artificial neural networks. Some applications have been reported (Babuˇska
et al., 1996; Johansen and Foss, 1997; Rouboset al., 1999). For chemical engineering ap-
plications, the use of fuzzy logic is of particular interest. The ability to deal with different
sources of information (such as process data as well as expert knowledge) and nonlinearities,
in a straightforward manner, makes the approach of suitable for modeling complex chem-
ical systems. In addition, fuzzy models are more transparent than neural networks, which
make them useful in applications where transparency is required. It is therefore of interest to
investigate the use of fuzzy logic in hybrid modeling.

1.4 Objective

This work deals with the development and analysis ofhybrid fuzzy-first principles mod-
els. The objective is twofold. First, thedesignof hybrid fuzzy-first principles models is
investigated. This involves the determination of a suitable hybrid model structure as well as
model identification. This may be straightforward for simple systems, but can be difficult for
more complex systems. Astructured modeling approachwill therefore be presented, which
provides the possibility to divide the modeling problem into smaller subproblems. In addi-
tion, it provides the flexibility to use different modeling tools during model design. This may
be beneficial for applications which require specific or customized techniques. The structured
modeling approach will be applied to several processes. This provides insight in the use of
the modeling approach and modeling tools.

Secondly, thepropertiesof hybrid fuzzy-first principles models are investigated. A frame-
work that characterizes the quality of hybrid models will be presented. Using this framework,
properties such as performance, complexity and interpretability can be analyzed. This will
form the basis for comparing hybrid models with other model structures. As such, this work
provides modelers in process engineering with information to determine whether hybrid mod-
eling is a suitable solution to their modeling problem.
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1.5 Thesis outline

In this thesis, some understanding of fuzzy logic will be assumed. Basic concepts of
fuzzy set theory are discussed in appendix A. For a more detailed discussion on fuzzy logic,
the reader is referred to Yager and Filev (1994).

Chapter 2 discusses some general modeling paradigms. This will serve as an introduction
into process modeling and related topics and provides a context for hybrid models.

Hybrid modeling will be discussed in chapter 3. A general hybrid model structure and the
structured modeling approach will be presented. In addition, a framework for evaluating
model quality will be derived, which provides a basis for a discussion on the applicability of
hybrid models. The chapter also discusses the use of different sources of information: first
principles, process data and expert knowledge.

Chapter 4 presents the design of hybrid models in more detail. The design phase involves
the determination of the hybrid model structure, the identification of the fuzzy and physical
parts and the integration of these parts. Different tools and identification algorithms will be
discussed. The tools will be used to develop a hybrid model for a simple simulated fed-batch
bioreactor, which will serve as an example throughout the chapter.

A hybrid model of a simulated continuous pulp digester will be developed in chapter 5. This
illustrates the modeling approach for a more complex system. Using the model quality frame-
work derived in chapter 3, the hybrid model will be compared with the two extremes of the
hybrid fuzzy-first principles modeling ”spectrum”: first principles models and fuzzy models.
This will provide modelers with more insight in the properties of hybrid models in relation to
more conventional modeling approaches.

In chapter 6, two different hybrid models for a batch distillation column set-up will be de-
signed and compared. This illustrates the application of the modeling approach in an exper-
imental environment. It also illustrates two different approaches to the determination of a
hybrid model structure which describes the essential dynamic characteristics of the process,
based on prior knowledge.

The thesis will conclude with a discussion on the most important results and some suggestions
for future research in chapter 7.
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2

Process modeling





The notion of amodelis widely used in almost every field of science. The term model
is applied to entities varying from mathematical descriptions to scaled down replica’s of the
actual system. This chapter discusses some general aspects of models for and the modeling
of chemical processes. It is not intended as an in depth discussion of various techniques,
but more as an introduction into process modeling and related topics. The considerations
presented here form a basis for chapter 3, where hybrid fuzzy-first principles modeling is
discussed.

2.1 What is a model?

A general definition of a model in an engineering environment is given by Eykhoff
(Eykhoff, 1974). He defines a model as arepresentation of the essential aspects of an ex-
isting system (or a system to be constructed) which presents knowledge of that system in a
usable form. This means that a model is always a simplified representation of the real sys-
tem. Such a representation can provide insight in the behaviour of the system, which does
not necessarily mean that this insight isphysical. For example, if an engineer is interested in
developing a controller for a chemical reactor, he usually will want to know how the reactor
behaves dynamically. Whether this knowledge is based on physical principles or not does not
have to be relevant for his purposes.

A model is seldom a goal in itself. It is always a tool to help solving a problem, which benefits
from a mathematical description of the system. Applications of models in engineering can be
found in three general areas (Eykhoff, 1974; Luyben, 1990):

• Research and development.A model in research gives an interpretation of knowledge
or measurements. An example is the determination of chemical kinetic mechanisms
from laboratory or pilot-plant reaction data.

• Design.Models used in design can be used to determine the correct design parameters
of a component or sub-system or can be used to study process stability, process safety,
economical aspects, etc. This means that the available knowledge has to be expressed
in such a way that it is compatible with these criteria.

• Control. The control actions are based on the knowledge that is available of the system.
In addition, it is cheaper to conduct experiments concerning plant operation and control
on models than on an operating unit (which does not mean that experimental setups are
not needed at all). The control actions can for example be designed to keep the process
on normal operating conditions, to handle the process in emergency situations (such as
diagnostic systems) or to manage start-up and shut-down processes.
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Process models

White box/
Black box

Linear/
Nonlinear

Static/
Dynamic

Distributed/
Lumped

Continuous/
Discrete

Frequency/
Time

Figure 2.1: Points of view for model structure comparison

2.2 Types of models

The different applications of models and the performance criteria that result from these
have lead to many different model structures. These can be compared from different points
of view. Figure 2.1 illustrates this.

2.2.1 White box and black box models

Models that are entirely based on physical and chemical laws (thermodynamics, continu-
ity equations) are calledwhite box, first principlesor mechanisticmodels. These models give
a physical insight of the system and can even be built when the system is not yet constructed.
Usually a set of (partial) differential equations supplemented with algebraic equations is used
to give a mathematical description of the model. The effort needed to build these models is
usually high, certainly for complex chemical systems.

Black boxmodels do not use any structure that reflects the physical structure of the system:
black box models (also called empirical models) give an input/output relation of the process.
These models are useful if a physical understanding of the system is absent or not relevant
for the purpose of the model. Mathematical descriptions used include autoregressive models
(such as ARMA and ARMAX models), Artificial Neural Networks (ANN’s, see for example
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Figure 2.2: Physical interpretability of grey box models and examples of applications

Hertzet al. (1991)) and fuzzy logic as presented in this thesis.

Knowledge about the process may be incomplete, which can result in models that use both
first principles and empirical modeling strategies. Models that combine both approaches
are calledgrey boxmodels. In practice, most models used will be grey to some extend,
simply because knowledge about the system may be incomplete, due to lack of physical
understanding or the lack of detailed process information.

The level of black box techniques used in grey box models denotes the level of physical
interpretation that can be given to a model (see figure 2.2 (Sohlberg, 1998)). If physical
interpretation is important then the model should be as white as possible. This means that
the structure of the model should be based on first principles as much as possible. The level
of interpretation also depends on the required level of detail of the model. For example,
for process design it is sufficient to describe mass or heat transfer with a single coefficient.
However, for more fundamental research studies at molecular level such descriptions are not
adequate.Hybrid fuzzy-first principles models are a class of grey-box models.
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Process modeling

2.2.2 Linear and nonlinear models

Models that have the property of superposition are calledlinear models. A model of the
form y = f(u) exhibits the property of superposition if:

αf(u1) + βf(u2) = f(αu1 + βu2) (2.1)

whereα, β ∈ < are constants. This also applies to differential equations. For example,
equation 2.2 is linear and equation 2.3 is not.

ẋ = ax + u (2.2)

ẋ = ax2 + u (2.3)

In many of the optimization methods and control algorithms, linear (or linearized) models
are used. However, in chemical engineering, processes are hardly ever linear. To model these
processes, linear models can be used, but to a limited extend. Linear models provide an
accurate enough solution in a specific working range. An example is first order Taylor series
expansion, where the first derivative describes the behaviour of the system around a working
point.

Nonlinear models are hard to solve analytically, but several sophisticated methods are avail-
able to solve these models numerically. Commercial software packages such as gPROMS
incorporate these methods, so that the modeler only has to be concerned with the formulation
of the model and not the derivation of the solution.

2.2.3 Static and dynamic models

A model is static if the description of the independent variables does not change with
respect to time. This is also denoted as a steady state description. Dynamic models are
capable of describing the transition of variables with respect to time. Modeling the behavior
of a batch reactor for example will result in a dynamical models, because a batch process is by
definition unsteady state. If a model is based on continuity equations, the difference between
a static and dynamical form often results in setting the accumulation term zero or not. Static
models in chemical engineering are often used in design and optimization; dynamic models
find their application in process control.

2.2.4 Distributed parameter and lumped parameter models

Variations in space of properties of the system require different modeling approaches.
Spatial variations of variables or parameters (for example the concentration in a tubular reac-
tor) can make the model description and solution complex. Models that take these variations
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into account are calleddistributed parametermodels. Sometimes it can be convenient to
”lump” these variations by assuming homogenic properties. A lumped parameter model thus
does not describe spatial variations, which may be an approximation of reality if these varia-
tions are present in the system. A lumped parameter model of the tubular reactor mentioned
above can be made by dividing the reactor in homogenic ”cells”, for each of which a lumped
parameter model can be constructed. Together these models from an approximate description
of the process.

Care must be taken that a lumped parameter representation approximates the behaviour of
the system sufficiently. It may be difficult to determine beforehand if a lumped parameter
representation is valid. There are, however, some criteria which can help the modeler, such as
the Péclet numberPe, which is defined as the ratio between the transport rate by convection
and the transport rate by dispersion (Westerterpet al., 1984).

2.2.5 Continuous and discrete models

In essence, continuous means that a variable can have any value at a given interval,
whereas discrete variables can only have a given number of values. Although models can be
discrete with respect to any variable (for example the number of trays in a distillation column,
which is a discrete property of the system), the distinction between continuous and discrete
models is usually made with respect to time. Discrete time models calculate the state of the
system at given time intervals. When in this thesis a model is called discrete or continuous, it
means that it is discrete or continuouswith respect to time.

For digital computer simulation, a model has to be discrete at some point in the solution
procedure. The numerical solution methods all require discrete models. However, many of
the software packages available today are capable of discretizing the model automatically, so
that the modeler can supply the continuous model, if desired.

Discretization of first order differential equations is done as shown in equation 2.4 (numerical
differentiation).

dx

dt
=

xk+1 − xk

∆t
(2.4)

wherex denotes the variable to be discretized,t denotes the time and the subscriptk denotes
the time step. This approximation is only valid for a sufficiently small interval∆t. More on
discretization and discretization errors can be found in Atkinson (1989).

Combinations of discrete and continuous models are also possible. These models describe
systems which incorporate discrete time events, such as switching procedures in electronic
circuitry. In literature these combinations of models are often called hybrid models. However,
it must be noted that in this thesis the termhybrid modelis only used to denote hybrid fuzzy-
first principles models, unless stated otherwise.
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Process modeling

2.2.6 Frequency domain and time domain models

The distinction between time domain models and frequency domain models is made
for dynamical models only, because time dependence is by definition not incorporated in
static models. For the analysis of dynamical systems in may be interesting to investigate the
response of the system to a oscillating input with a certain frequency. Infrequency response
analysis, a system is subjected to a sustained sinusodial wave. The output of the system
will eventually also become a sinusodial wave, which for systems that are unstable for that
input frequency can be divergent. The features of this output signal (amplitude, phase shift)
with respect to the frequency of the input signal can then provide information of the system
behaviour as function of the frequency.

Frequency response analysis is an important tool in controller design. Bode diagrams and
Nyquist plots are convenient ways to investigate the dynamic characteristics of a (controlled)
system and can be used to determine the required control system characteristics.

2.3 Model building

Researchers often state that modeling is more an art than a science. Although the sci-
ence behind the various techniques that have been developed can hardly be called an art, it is
not necessarily disadvantageous that modeling is considered an art. The applications and re-
quirements are far too different so that the development of a general model building approach
would be extremely difficult and decisions concerning the modeling of a system can often
best be made by an system expert. Some researchers argue that it is not desirable to develop
a ”methodical modeling layer” and that research efforts in this area should be directed to
practical and effective approaches to solve problems. While the decisions made by a modeler
during the modeling process may be based more on his expertise than on a methodology, it
may be worthwhile to discuss some aspects that can be taken into account.

The modeling process can be divided in four phases: problem definition, design, evaluation
and application (figure 2.3). In the problem definition phase, the modeling problem and the
goal of the model are properly formulated. This formulation is based on performance and
structure requirements with respect to the application and on the modeling expertise of the
modeler. This expertise can help beforehand to determine if these requirements are realistic
and can be met using the modeling techniques that are available.

Based on this formulation, the key variables and the structure of the model are determined and
the model parameters are identified in the design phase. For white box models, the structure
of the model reflects the physical structure of the system, which means that additional design
steps have to be taken: formulation of the basis of the model (physical and chemical laws) and
making assumptions (finding a balance between microscopic, physically correct descriptions
which require a lot of modeling effort and more general descriptions which yield less accurate
results).
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Figure 2.3: General phases in model building

In the evaluation phase, the model itself is verified with respect to its structure and the re-
sults of the model are validated with the real world situation. In addition to performance
evaluation, the requirements with respect to the model structure (such as transparency of in-
terpretability), as formulated in the problem definition phase, need to be evaluated. If the
criteria are not met, the model needs to be improved, which makes modeling an iterative
process. If the criteria are met, the model can be applied.

Chapter 3 will discuss model building in more detail with respect to hybrid fuzzy-first prin-
ciples modeling.

2.4 Model structure considerations

Since models are used as a basis for further decisions, the knowledge should be presented
in a usable form. The model should not be too complex, but must give a sufficiently accu-
rate description of the system. Furthermore, requirements with respect to transparency and
interpretability have to be taken into account.

The selection of the form of the model plays a more important role when white box modeling
is applied than when black box modeling is used. While black box modeling techniques
only require the specification of the input and output variables of the (sub)system and the
correlation between these, white or grey box models in addition require the specification of
the form of the mathematical relations that are used. This requires skill and experience.

Figure 2.4 shows some of the possible mathematical structures that are used in white or
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Figure 2.4: Typical mathematical forms of models, with examples for differential equations

grey box modeling (Edgar and Himmelblau, 1988). The eventual decision of what the best
structure is can best be madead hoc, based on the problem itself, the insight of the modeler
and common practice in the field of application. Models for research purposes, for example,
are preferably white box, or as white as possible. Models for online applications in control
need to be solved quickly, so they cannot be too complex. If a model is used for plant
debottlenecking, steady state models usually suffice. However, batch optimization requires
dynamic models, etc.

2.5 Performance criteria

Model evaluation of deterministic models consists of two parts: numerical performance
validation and model structure verification. These have to be evaluated with respect to the
goals formulated in the problem definition phase. A clear distinction between verification
and validation is made here.

2.5.1 Model verification

Verification is more an internal procedure: the mathematical correctness of the model
structure is ascertained and the structure requirements are checked. Using common sense is
of paramount importance, but there are some tools available which can help the verification
process.
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Parameter range
When using a physical base for modeling, usually there is somea prioi information about the
magnitude of the estimated parameters. For example, some parameters can only be positive,
such as viscosity. The parameters of the model can be checked with respect to this knowledge.

Sensitivity analysis
It may be interesting to investigate the influence of parameters on the outputs of the model.
This can be done using sensitivity equations. The sensitivities are expressed by partial deriva-
tives, such as:

∂ŷ

∂θ
(2.5)

which denotes the sensitivity of model outputŷ with respect to parameterθ. The calculation
can be done numerically using Euler’s method. The sensitivity can be approximated by:

S =
ŷ(θ + ∆θ) − ŷ(θ)

∆θ
(2.6)

whereŷ(θ) is outputŷ as a result of the value of parameterθ and∆θ is a small change in
the value ofθ. A time plot ofS can be useful to determine ifθ can be assumed constant or
not. This test can only be used for steady state models. If dynamic models are used, average,
integral or final-time variants of the test can be used, although interpretation of the results is
more difficult.

Structure tests
In modeling, the idea is to keep the model as simple as possible. If one model contains more
parameters than another, it’s performance can be better than the latter model, but it is also
more complex. If desired, the extra complexity can be penalized by incorporating the num-
ber of parameters in an error criterion for the model. This way, a trade-off between a low
modeling error and model complexity can be made. This kind of tests is especially useful in
black box modeling. See Sohlberg (1998) for more information.

Transparency and interpretability
Structure requirements in the form of transparency and interpretability criteria are hard to
formulate concretely. The modeler can form ideas about this beforehand, but the actual anal-
ysis can best be donea posteriori, because these criteria are subjective and can be subject to
change. For example, if the physical interpretation that can be given to the model is lower
than anticipated, but the extra modeling effort that is required to improve this is very high, the
interpretability criterion could be weakened. So, while having the model available, the mod-
eler can decide if these kinds of criteria are met or not. These issues are especially important
in white and grey box modeling. Examples will be given in other chapters in this thesis.

Statistical tools
There are several statistical tests available to judge the structure of a model. Examples are the
likelihood ratio test (were the ratio of the likelihood functions of two models provide infor-
mation about the loss of performance with respect to model complexity), Lagrange Multiplier
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tests (for nonlinear models) and Bayesian tests. These test provide possibilities to compare
two models. Since the other tools presented here provide sufficient information for the pur-
poses of this research, statistical tests are not discussed further. For a general overview of
statistical structural tests, see Holstet al. (1992).

2.5.2 Model validation

Validation means that model output is compared with measurements from the actual sys-
tem in order to determine if the model describes the real system accurately enough. This can
be done using various error criteria.

Cross parameter validation
Cross parameter validation can be seen as a form of ”in duplo” parameter estimation. If pos-
sible, the experiment that yields the data for identification is divided in two sub-experiments,
both of which are executed under the same circumstances. Based on this, it should be possible
to reproduce the estimates. The estimates of the parameters are compared with each other.
If one of the estimates resulting form the second experiment differs substantially from the
corresponding estimate in the first experiment, the part of the model that uses this estimate
should be investigated further.

Residual tests
The residuals are represented by the innovation of the process (or the model error). The
innovation is defined as:

i = y − ŷ (2.7)

in whichi is the innovation vector,y is the process measurement vector andŷ is the estimated
process output vector. The innovation is a suitable index to investigate the mismatch between
the real process and the model. The residuals represent unmodeled parts and disturbances.
For the ideal model the innovation should be white and normally distributed (independent of
each other). The easiest way to analyze the innovation is to simply plot it, which can reveal
trends, peaks or other deviations that are not desired.

The most common tests to check the behaviour of the innovation are the calculation of the
auto-correlation and the cross-correlation with the input. The auto-correlation of a single
innovation signali calculated as:

rii(τ) =
1

N − τ

N−τ∑
k=1

(i(k) − ī)(i(k + τ) − ī) (2.8)

whereτ is the time lag,N is the number of innovation values andrii(τ) is the auto-correlation
of the innovation at lagτ . Often, the normalized auto-correlation is used:

r′ii(τ) =
rii(τ)
r(0)

(2.9)
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If the auto-correlation is plotted as a function of the lagτ and a confidence interval is set, the
performance can be analyzed. The confidence interval is usually set at the 99% confidence
interval for the asymptotic distribution, calculated as[−2.58/

√
N, 2.58/

√
N ]. If the normal-

ized autocorrelation at lagτ > 0 falls outside this interval, the residuals are not independent.

The cross-correlation with respect to the input is similar to the auto-correlation test. The
cross-correlation between the inputu and the innovationi of a system is given by:

rui(τ) =
1

N − τ

N−τ∑
k=1

(u(k) − ū)(i(k + τ) − ī) (2.10)

The normalized form is given by:

r′ui(τ) =
rui(τ)√

ruu(0)ryy(0)
(2.11)

whereruu(0) andryy(0) are the auto-correlations of the input and the output at lag 0, re-
spectively (calculated with equation 2.8). The cross correlation can be expressed for positive
and negative lag. A peak for negative lag indicates feedback in the system. This means
that feedback can be present in the process itself, or the experiments that were used to gen-
erate the data were carried out with a control signal which is based on the process output.
The cross-correlation is compared with the 99% confidence interval, in the same way as the
auto-correlation.

Another method is the normal distribution test. In this test, a histogram of the magnitudes of
the residuals is plotted. In addition, a Gaussian curve based on the standard deviation of the
innovation is plotted. This way, the distribution of the histogram can be compared with the
normal distribution curve, which provides information about the residual distribution. Ide-
ally, this distribution should also be normal.

Tracking index
A convenient performance index to check if the model describes the measurements accurately
enough is the so called tracking error index. The index is also often used in optimization
methods and for control optimization and essentially is an integrated square error. The track-
ing index for the continuous case is based in the innovationi as a function of time and is
defined as (Ramirez, 1994):

et =
∫ tf

0

(iT Qi)dt (2.12)

with [0, tf ] the time interval for which the index is evaluated.Q is a weighting matrix. The
discrete form of this equation is given by:

et =
N∑

k=0

(i(k)T Qi(k))∆t (2.13)

Root mean squared error
One of the most commonly used error measures is the Root Mean Squared Error, or RMSE.
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It is defined as (Sneddon, 1976):

RMSE =

√√√√ 1
N

N∑
k=1

i2 (2.14)

wherei is a single innovation signal.

Parameter identifiability
The identifiability criterion can be used to determine whether the measurements that were
used provide sufficient information for parameter estimation. This evaluation can be done
by using the covariance matrixCov(θ̂), which is the covariance matrix of the estimated
parameter vector̂θ. The lower bound for this covariance matrix (Cramer-Rao lower bound)
is given by:

Cov(θ̂) ≥ M−1

θ=θ0
(2.15)

whereM is Fisher’s information matrix andθ0 is the value of the estimated parameter vector.
Fisher’s matrix is determined by:

M = E(H(θ0)) (2.16)

with H(θ0) the Hessian of the parameter vectorθ0. The Hessian is defined in this context as
the second order derivative of the likelihood function. The likelihood functionL is defined as
the functional relationship between the observed values of the variables of the system and the
estimate of the parameter vectorθ̂, determined from these observations. This functional rela-
tion is governed by a probability function, which also incorporates the model equations. If the
probability function is not known, an uniform distribution can be chosen as an approximation
(Eykhoff, 1974). The Hessian then becomes:

H(θ) =
(

∂

∂θ

)T (
∂

∂θ

)
L(θ) (2.17)

If the covariance of some parameters, found in the diagonal of the matrix, is very large,
then those parameters are not very sensitive with respect to the given measured data. This
means that the experiment is not sufficiently informative or that the model may be overpa-
rameterized. More about statistical validation measures can be found in Boxet al. (1978)
(experimental) or Kendall and Stuart (1979) (more fundamental).

2.6 Remarks

Within the spectrum of model structures, the hybrid models that are discussed in this
work fall in the category of grey box models: part of the model structure will be based on
first principles, part will be black box. Although they can be static, the focus will be on
dynamic models, which makes them suitable for applications that require dynamic models
(such as process control applications) as well as for applications that require static models.
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The wide range of model structures that are used in chemical engineering are the result of
the different requirements that applications demand. Even within classes of models, many
variations and different substructures may exist. Based on the requirements, the modeler
needs to select the model structure with the properties that, in his view, can solve the modeling
problem.

As a result, the focus will be on the development and properties of hybrid fuzzy-first prin-
ciples models instead of some application of a hybrid model. The general structure, design
and analysis of hybrid models will be discussed and illustrated for different processes. This
will provide modelers with a general basis to make the decision whether hybrid models can
be used in their application.
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3

Hybrid fuzzy-first principles models





The combination of fuzzy logic with first principles models as proposed in chapter 1
results inhybrid models. The term ”hybrid” is used here to denote the combination of two
white box and black box modeling techniques. In the literature, such models are also called
grey box, semi-mechanistic or polytopic models. Some research has been done in this area
(most notably by (Psichogios and Ungar, 1992; Thompson and Kramer, 1994)), though little
research has been presented in which fuzzy logic is used in a similar context.

This chapter will present a detailed definition of hybrid fuzzy-first principles models and will
discuss different model structures. Subsequently, a framework for evaluating model quality
will be derived. Using this framework, the applicability of hybrid models is discussed. In
addition, a structured modeling approach, which will serve as the basis for the development
of hybrid models, will be presented. The main sources of information for building these
models and guidelines for applying them will be also be discussed.

3.1 What is a hybrid fuzzy-first principles model?

In hybrid modeling, a distinction can be made between a modular approach and a semi-
parametric approach. The latter approach falls apart into a serial and a parallel approach
(Thompson and Kramer, 1994).

In modular design approaches, several blocks of fuzzy logic submodels are combined to
constitute the process model. The structure of the overall model is determined using prior
knowledge, while every block calculates one specific variable or parameter. Advantages of
this approach are that it may improve interpretability and that it may reduce the number
of model parameters. The hierarchical configuration of such models reduces for example
the number of input variables which results in a less complex fuzzy block and thus a fuzzy
block that contains less parameters. A major disadvantage is that good output behavior is
not guaranteed because the combination of the blocks could generate an overall divergent
behavior (Thompson and Kramer, 1994). The fuzzy submodels are only valid in the input-
output domain for which data was present during identification. If the state of such a model
is outside this domain, unpredictable divergent behavior can occur, which is much less likely
to happen with physical equations.

With semiparametric modeling, a fuzzy logic submodel is placed in tandem with a physical
model. The physical model structure is fixed and derived from first principles. In the serial
approach, fuzzy logic submodels calculate model variables which the physical part of the
model requires. The input of these fuzzy submodels is provided by the physical part of the
model. In figure 3.1 an example for a serial semiparametric hybrid model with one fuzzy
block is given.

In the parallel approach, the outputs of the fuzzy logic block and the physical model are
combined to determine the total model output (figure 3.1). The model serves as a best estimate
of the process. The fuzzy logic submodel is implemented such, that it is able to compensate
for any discrepancy between the physical model output and measurements. A disadvantage
of this approach is that desired behavior is not guaranteed, especially if the model is used
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Figure 3.1: Serial (a) and parallel (b) semiparametric design approaches. In both cases the hybrid model
consists of a physical and fuzzy part, but in the parallel approach they are not connected

under process conditions that were not included in the identification process.

If first principles models are preferred over black box models, it is proposed to leave the phys-
ical model structure intact as much as possible and only model those phenomena about which
uncertainty exists (regarding model equations) with fuzzy submodels. The physical model
structure is formed by dynamic mass and energy balances, while the fuzzy submodel(s) de-
scribe production rates, heat and mass transfer, equilibria, growth rates, etc. This way, hybrid
fuzzy-first principles models are obtained which combine a high level of interpretability with
the expectation of good extrapolating properties. Therefore, a serial semiparametric modeling
approach is used. Thus in this work, hybrid models are defined asa framework of dynamic
mass and energy balances, formulated in state-space form and supplemented with algebraic
and fuzzy equations.

3.2 General properties and applicability

Because of their general form, hybrid fuzzy-first principles models can be applied in most
research and engineering fields in chemical engineering. The structure of the model depends
on the type of application and the process that is modeled. The focus here is ondynamical
hybrid models, which can be used to describe the dynamical behavior of the process. Fields of
application include process simulation, process control system design, process optimization
and process behavior prediction.

Whether a hybrid model is suitable for a process depends on the application of the model and
is the choice of the modeler. A hybrid model can be developed for any process, but it may
not always be the best choice. This work only presents the construction and the properties
of hybrid models, based on which the modeler can make his or her choice. It is possible,
however, to give some guidelines for deciding whether hybrid models can be a solution to a
modeling problem.
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3.2.1 Model quality

Usually, the most important quality of a model is its performance. However, model per-
formance does not provide sufficient information about the general properties of a model,
certainly with respect to transparency and interpretability. A discussion about model proper-
ties should therefore not only include performance, but the different qualities of a model as a
whole.

It is difficult to define the term ”quality”. This may be attributed to several reasons (Kan,
1994). First, quality is multidimensional concept. Second, there are different levels of ab-
straction; one can refer to it in the broadest sense or to its specific meaning. Third, the term
quality is a part of our daily language and the popular views of the term may be very different
from its use in professions in which it is approached from the engineering or management
perspective.

Quality is viewed upon as intangible; it cannot be weighted or measured. Many people
comment on quality that they ”know it when they see it.” In addition, luxury, class and
taste are often associated with quality. These terms are rather vague. In engineering, more
workable definitions have been formulated. (Crosby, 1979) defines quality as ”conformance
to requirements”. This implies that requirements must be clearly stated. This definition does
not take customers’ requirements into account. A final product may conform to requirements,
but it may not have been what the customers wanted. Therefore, the role of the customers
should be explicitly incorporated in the definition of quality: conformance to customers’
requirements (Kan, 1994).

In order to measure the quality of a model, it should be divided into several more tangible
aspects. In other words, in order to measure quality, metrics should be defined. In software
design, quality analysis is more common than in process modeling. (Boehm, 1973) formu-
lates a hierarchy of software characteristics that results in a ”characteristics tree”. Thegeneral
utility of a software product is determined by itsas-is utility, its maintainabilityand itsporta-
bility. These three characteristics are then divided into more specific characteristics such as
device independence, completeness, accuracy, accessibility, etc. In analogy to Boehm’s char-
acteristics tree for software quality, a characteristics tree can be designed as a basis to map
the different aspects of model quality. This is shown in figure 3.2.

To be applicable, model performance has to meet predefined requirements. This means that
the model error has to be within acceptable boundaries. Error criteria can be defined to
judge static performance as well as dynamic performance. In addition, model applicability
can be determined by investigating interpolation and extrapolation properties. This provides
information about the performance of the model outside its working area.

The second aspect of model quality is maintainability. Maintainability in this context can be
evaluated by investigating model transparency. If a model is transparent, the model can easily
be maintained by improving or replacing specific parts of the model. Model transparency is
defined by its complexity and interpretability. The complexity and interpretability of the
model equations as well as the model structure can be analyzed.
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Figure 3.2: Model quality characteristics tree

Portability provides information about the extend to which a model is built for a specific in-
stance of an installation. Portability may be important for applications in the field of research
and development or design. High levels of process independence yield transferable models.
Process independence can be investigated by analyzing the types of information that are used
to build the model.

The three aspects are not completely independent. Good extrapolation properties may result
in high levels of process independence but may yield models that are more complex than
desired. Model interpretability is important for design purposes and affects model utility and
maintainability. In addition, not all aspects are equally important for a given application.
This has to be taken into account in when analyzing a hybrid model. Therefore, requirements
with respect to each aspect of model quality should be determined as well as their relative
importance.

3.2.2 Model applicability

It is infeasible to provide a complete list of properties of hybrid models since each model
has a unique purpose. However, aspects for each of the general areas of application (research
and development, design and control) can be formulated. This will enable a comparison
between hybrid models and models at the extremes of the grey box modeling ”spectrum”:
first principles models and black box models. Based on this comparison, the modeler can
decide of hybrid modeling can provide a solution to the modeling problem.
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Model Application
Property First Prin. Hybrid Black box R&D Design Control
Static performance ++ + + • •
Dynamic performance ++ ++ 0 • •
Complexity 0 + ++ • • •
Interpretability ++ + −− •
Process independence ++ 0 −− • •

Table 3.1: Comparison of general model quality aspects

Research and development applications are the most demanding. The model usually has to
provide detailed information about the process behavior. The model needs to be built in such
a way that elements can be improved or changed without affecting the overall structure. For
off line analysis, the model often needs to be process independent. Dynamic and static perfor-
mance can be less important; the qualitative behavior is more important than the quantitative
behavior.

Models built for design studies require accurate performance and need to be portable, cer-
tainly in the case a process has not been built yet. In addition, if optimization procedures are
applied, extrapolation properties need to be good. Complexity and interpretability are less
important; as long as the information that is required is provided.

The most important quality aspect of process models for control is dynamic performance.
The model needs to provide accurate input-output information in order to be able to design
a control structure. If the model is to be used in model-based control approaches, the model
needs to be as simple as possible so that it can be solved quickly online. Portability is less
important; controllers are often designed for a specific installation.

The most relevant quality requirements for each application area are shown in table 3.1. For
every application, the as-is utility of the model will be important; this is the basic aspect by
which to judge model quality. If the model cannot be applied, it is not useful. The importance
of maintainability and portability depends more on the application.

In general, hybrid fuzzy-first principles models are useful when a physical model is required,
but difficult to construct. In such cases, aphysically interpretablemodel is needed for the
application (interpretable in the sense that, by analyzing the model equations, the phenomena
that are modeled and their mutual relations are clear). When there is a lack of understand-
ing of the observed behavior of the process, which is often highly nonlinear, fuzzy logic
can provide a means of describing this behavior in a accurate and transparent way. In ad-
dition, because the hybrid model’s structure is based on first principles, a certain level of
interpretability is guaranteed.

However, if a complete physical understanding of the process behavior is required, hybrid
modeling should not be applied. Although hybrid models are transparent, the fuzzy equations
do not have a physical meaning in the first principles sense. Fuzzy logic is a black box
technique and not based on first principles. It may be possible to give a physical interpretation
to the rules of the fuzzy modela posteriori, but this only gives qualitative insight, not insight
in the actual physical processes that are taking place. First principles models can provide
more detailed information, although this results in a higher level of complexity.

31



Hybrid fuzzy-first principles models

If a physical interpretation is not relevant for the application, black box models may be better
suited than hybrid models. Black models are easier and faster to build than hybrid models.
They are less complex than hybrid models. They are usually also solved faster than hybrid
models (black box models usually calculate model outputs directly, while hybrid models in
state-space form require numerical solvers to calculate model output), which may be impor-
tant in online applications.

Hybrid fuzzy-first principles models are identified more quickly and more easily than first
principles models, since they are less complex. In addition, there are modeling tools avail-
able which can determine the fuzzy equation structure and parameters fast and automatically.
The identification effort is far less than is the case with complicated physical or empirical
equations. If the development time for the model is limited and a complete first principles
model is not required, hybrid modeling can be a good alternative.

As with first principles models, hybrid models need fairly detailed information about the
behavior of the process. Process variables or parameters need to be available or it must
be possible to estimate them (the system needs to be observable). If this is not possible,
black box models can be a better alternative to hybrid models, because for black box models,
usually input-output data of the phenomena under study is sufficient. However, to model
the process dynamics, black box models need large amounts of dynamical data. In hybrid
models, the dynamics are described by first principles. This means that less dynamical data
is required and that hybrid models will perform better dynamically than black box models,
certainly with respect to extrapolation.

The level of process independence is largely determined by the sources of information that
are used to build the model. If process data is the main source, the model will be process
dependent. This is the case for black box models. The use of first principles information
increases the level of process independence. If, in hybrid modeling, the static properties
are derived from process data or expert knowledge and these properties are process specific,
the hybrid model will be more process dependent. Good static performance of the hybrid
model will then be limited to the process or the operating conditions that were used during
identification.

One of the main advantages of the use of fuzzy equations is that nonlinearities can be de-
scribed in a simple way. These nonlinearities become apparent if the process has a large
operating regime. A model for such a process is thus required to describe these nonlineari-
ties adequately. In this case, hybrid models can be suitable. If the process is nonlinear, but
these nonlinearities are not apparent during normal operating conditions, linear approxima-
tions may suffice. Examples of processes with large operating regimes are batch processes,
distributed parameter processes or cyclic processes.

The differences between the types of models discussed, in relation to model quality, are given
in table 3.1.
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Figure 3.3: Hybrid model building approach

3.3 Modeling approach

Most literature about modeling focuses mainly on the parameter identification step. Rel-
atively little is written on how to design a specific strategy for model development. This
section will present such a strategy, based on the approaches presented in (Sohlberg, 1998)
and (Edgar and Himmelblau, 1988). The two different approaches are integrated and adapted
for hybrid fuzzy-first principles models.

The modeling approach is shown in figure 3.3. The approach consists of several sequential
steps, performed independently of each other. Other research on hybrid modeling promotes a
global approach (Psichogios and Ungar, 1992; Rouboset al., 1999; Thompson and Kramer,
1994). A global approach is usually based on training the black box relations within the
hybrid model using error feedback. The advantage of this approach is that it can reduce the
number of steps that have to be taken during model development. The disadvantage of this
approach is that one is easily inclined to only judge overall model fit, irregardless of the
complexity and number of fuzzy relations. This is detrimental to model transparency. The
advantage of independent steps is that the modeling problem is reduced to several smaller
and simpler problems. The solutions of these problems are then combined to form the overall
model.

Three main sources of information are generally available when constructing hybrid models.
Physical understanding generally forms the basis of the model and is the result of fundamental
research. The modeler has to acquire relevant first principles knowledge with respect to the
modeling problem, that can be found in the general literature.

Process measurements are the most important source of information of a specific process.
While first principles provide general information about the behavior of the process, process
measurements are required to identify a suitable process model.

In addition to process measurements, human experience is an important source of information
because it can be used to learn more about dependencies of relevant phenomena of the process
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and thus the structure of the model. A human can, based on his or her experience, denote
whether certain effects are important or negligible. Based on this information, the modeler
can decide whether these effects have to be accounted for in the model. In addition, human
experience can be used to design fuzzy relations which quantify the human experience.

The modeling approach consists of three phases. In the first phase, the problem is defined,
based on external objectives (the application of the model) and modeling tools and approaches
that are available. In the second phase the model is build, which is evaluated in the third phase.

3.3.1 Problem definition

At the basis of model building lies the formulation of the objectives of the model. On the
one hand, these objectives concern the specific process for which the model is being built.
Objectives of models for product or process design will be different from objectives of models
that are developed for process simulation or fault diagnosis. In addition, the domain in which
the model must be valid is to be determined.

On the other hand, objectives can be formulated that apply to hybrid models in general. These
are:

• Hybrid models need to consist of a framework of accumulation balances, supplemented
with algebraic equations and fuzzy functions. The most important dynamics of the
process need to be incorporated in the structure. Fuzzy functions only need to be
applied if no suitable physical relation (or other acceptable empirical relation) can be
found.

• Hybrid models need to be transparent. This means that the models need to be as un-
detailed as possible within the constraints of the objectives. The modeler should start
with a global form and apply more detail if the objectives are not met.

• A more subordinate objective is that the fuzzy functions need to be interpretable. This
means that the fuzzy functions need to be kept as transparent as possible (limited num-
ber of rules, for example). More complex relations are preferably represented by hier-
archical fuzzy systems, which consist of a cascade of several simple fuzzy systems.

The modeling tools or techniques that are available provide some of the context in which
the model is being built. These have to be taken into account when the model objective is
formulated. For example, a model that is to be used for online model based control but that
describes the behavior on a molecular level is impractical.

The objective results in a set of requirements. The key variables are distinguished and per-
formance requirements that these key variables have to meet are set. In addition, other model
quality requirements are formulated, for example the amount of information that the model
has to provide or the level of transparency that is needed.
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3.3.2 Hybrid model design

The aim of the design phase is to analyze the process and build the hybrid model, based
on the requirements. This is done by dividing the modeling problem into smaller subproblems
and dealing with them independently. The division is performed in two ”dimensions”. First,
the process is partitioned into so-called ”subprocesses”, which represent different parts of
the process, such as heat transfer, mass transformation or accumulation. Subsequently, a
”submodel” is developed for each subprocess. The development of the submodels consists of
sequential steps: structure design, behavior estimation, identification and optimization.

The design phase consists of the following steps:

• Basic modeling. The process in analyzed and the model structure is designed using
first principles and process expertise. In this step, a physical framework is designed that
describes the key variables and the mathematical dependencies for nonlinear model
parameters and additional variables are determined. In addition, the parameters that
will be described with fuzzy logic are distinguished. The result can be interpreted as a
number of subprocesses, for which submodels can be developed. The relation between
these subprocesses is represented by adata flow diagramor DFD.

• Data acquisition. To be able to perform the identification of the various model pa-
rameters, sufficient process data needs to be available. This data can be gathered by
doing experiments specifically designed for obtaining process behavior information if
this information is not readily available. Parameter or state estimation techniques can
also be used to obtain the correct information.

• Subprocess behavior estimation.Based on the model structure, the modeling prob-
lem is reduced to several subprocess behavior estimation problems, since the subpro-
cess behavior often cannot be measured directly. See for example (Eykhoff, 1974; Luy-
ben, 1990; Seinfeld and Lapidus, 1974; Sohlberg, 1998; Van Lithet al., 2001).

• Submodel identification. Using the obtained data the model parameters and fuzzy
blocks can be identified.

• Submodel integration.The submodels are integrated to form the hybrid model, which
involves connecting the submodels and optimization of the hybrid model performance.

• Model adjustment. It may be necessary to adjust the model structure, based on the
results of the evaluation phase. Usually, this means that a larger level of detail is
needed. The choice of a more detailed description will depend on the experience and
skill of the modeler.

The design phase will be discussed in more detail in chapter 4.
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3.3.3 Hybrid model evaluation

Questions that need to be answered in this phase are: ”Has the correct model been built?”
and ”Has the model been built correctly?” The quality of the model needs to be analyzed with
respect to the requirements. Based on the quality analysis, the decision needs to be made if
the model is really suitable or if it needs to be adjusted. The adjustment can take place
in two ways: feedback through renewed identification (based on new identification data) or
feedback through model adjustment. Based on the definition of model quality (section 3.2.1),
some general pointers for model quality analysis can be given.

Model performance

Model performance can be divided in static and dynamic performance. Depending on
the model application, a suitable error criterion needs to be defined, as well as performance
requirements. Interpolation and extrapolation provide additional information about model
validity.

Static performance involves calculating the model error under steady-state conditions. A
distinction is made between model validation under conditions within the working area (am-
plitude interpolation) and validation under conditions outside the working area (amplitude
extrapolation) (Van Canet al., 1998). The working area can be predefined or imposed by
process data that is available for identification; the model is most likely to be valid for the
range of the identification data. An extension of amplitude extrapolation is dimension extrap-
olation, in which an input which is kept constant during identification is varied. A convenient
way of visualizing interpolation and extrapolation properties is to plot the error criterion as a
function of the variable that is changed during the experiments.

Dynamic performance can be evaluated by applying a varying input signal to the process
and analyzing the model results. Again, the dynamic model performance can be validated
under conditions within the working area (frequency interpolation) and outside the working
area (frequency extrapolation). The working area is defined by the range of frequencies of
change of the input variables for which the model is valid. Frequency extrapolation can
also be investigated by changing variables that were kept constant during identification. The
dynamic performance can be visualized by a Bode diagram.

Model transparency

Model complexity and interpretability indicate how transparent a model is. Complexity
is determined by the amount of elements a (part of) a model consists of, while interpretability
is determined by the meaning of those elements. Complexity and interpretability of the model
structure and the model equations are taken into account.
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The complexity of the model structure indicates how well the model is built. An important aid
in analyzing model structure complexity are the data flow diagrams. These illustrate the con-
nections between the different modeled phenomena (subprocesses) in a clear manner. Points
of interest are the number of hierarchical layers in the model, the number of model equations
and the connectivity of the equations. A transparent model shows maximum cohesion with a
minimum number of connections between the equations.

Model equations are complex if they have a large input-output dimension, are highly non-
linear or contain many parameters and variables. In addition, the mathematical structure
influences equation complexity; an second order polynomial is less complex than a high or-
der partial differential equation. Equation complexity and model structure complexity are
related; a simple model structure obtained by combining several relations can increase the
complexity of model equations and vice versa.

Interpretability involves physical and non-physical evaluation. A model can be interpretable
in the sense that it is understandable how the model output is derived from the inputs, but this
may have no physical meaning. Again, interpretability of the model structure and the model
equations are taken into account.

Interpretability of the model structure mainly concerns physical interpretability. The structure
is physically interpretable if the elements (the equations) represent a physical process or
phenomenon. This can be analyzed using the data flow diagrams. Interpretability of the
model equations is based on the physical understanding of the mathematical structure of the
equation (the influence of first order over second order effects, for example). In addition,
equations can be interpretable while they have no physical basis; a fuzzy model may be
interpretable in terms of qualitative classification but it is not based on physical principles.

Process independence

The level of process independence depends mainly on the sources of information that are
used during model building. If the main source is process dependent, the model will also
be process dependent. Three main sources are available: first principles, process data and
human expertise.

First principles knowledge makes the model process independent. However, most models
contain a certain level of empirical information which is based on observed process behavior,
which makes the model more process dependent. The level of process dependence is therefore
closely related to the amount of process data that is used during model building. If this is the
main source, the behavior of the model will be based on the observed behavior of that specific
instance of the process. It is then likely that the model will not perform as well for another
instance of the process.

This is also the case for the use of human expertise. Categorizing knowledge is based on the
behavior that is observed from the process and thus process dependent. Process descriptive
or structural knowledge may also be process dependent, but usually to a lesser extend. A
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relation between two variables may be present in several instances of a process, but it may
differ quantitatively.

In general, the best way to evaluate model quality is to use a top-down approach. Given the
model application, first determine the relative importance of the as-is utility, maintainability
and portability. Subsequently, set requirements with respect to static and dynamic perfor-
mance, complexity, interpretability and process independence. Analyze only those elements
that are relevant for the application. The requirements have to be incorporated in the model
objectives and setting them is part of the problem definition phase.

3.4 The use of human expertise

Human expertise is used on different levels during hybrid modeling. In the first place, it
is used to analyze the problem and the process and to design the model structure. In addition,
human experience can be used during the design phase to provide quantitative information.
This information can be captured using fuzzy logic. With the use of human expertise, three
aspects need to be considered: the type of knowledge that is available, the eliciting of that
knowledge and using the elicited knowledge for hybrid modeling.

3.4.1 Types of knowledge

Before knowledge processing is discussed it is insightful to investigate different types of
and views to knowledge. Nonaka and Takeuchi (1995) accredits part the economical success
of Japan about 20 years ago to the Japanese view on knowledge, which was unique at the
time. According to their view, knowledge can be divided in two types:

• Explicit knowledge. Knowledge that easily can be expressed in words or numbers.

• Implicit or tacit knowledge. This type of knowledge can be segmented expertise and
schemata/mental models/beliefs/perceptions so ingrained that it is taken for granted.

Explicit knowledge can be stored easily, implicit knowledge can not. Dealing with implicit
knowledge includes learning something by mind and body. Heavy reliance is placed on
figurative language and symbolism. Some investigation has been done about how implicit and
explicit knowledge express themselves in process industry (Venkatasubramanian and Rich,
1988). A distinction betweendeep knowledgeandcompiled knowledgeis made.

Deep knowledge is used to denote knowledge that is generic and process-independent in-
volving concepts, constraints and behaviors of process units that are applicable to a variety
of situations:

• Restrictions based on the laws of conservation of mass and energy.
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• Confluence equations, which represent the influence of one state variable on another
state variable.

• A library of fault models of different process units which attempt to explain the local
cause of a low or high state variable value.

• Causal models of process units that would generate local effects given some cause.

Deep knowledge can be seen asqualitative knowledge. Deep knowledge gives information
about relations between process units or variables and is not necessarily process specific. This
knowledge can be very useful for designing model structures. This knowledge is the typical
knowledge process engineers are likely to have.

Compiled knowledge is essentially a compilation of experiences typically restricted to a given
process. Such knowledge can represent magnitudes of observed behavior and to a lesser
extend relations between variables that are process specific. Compiled knowledge can be seen
asquantitative knowledgeand can be useful for determining model equations and parameters.
Process operators are likely to have compiled knowledge about the process.

3.4.2 Knowledge structures

For knowledge elicitation, an overview about the form in which deep and compiled
knowledge are available provides a good basis. Different approaches can be found, general
as well as specifically for process knowledge.

A well known approach for developing knowledge-based systems is KADS1. To capture ex-
pert knowledge, KADS proposes to divide knowledge in four hierarchical layers (Tansley and
Hayball, 1993): the domain layer (basic facts and concepts), the inference layer (the process
of thinking), the task layer (inference sequences) and the strategy layer (selecting and plan-
ning of tasks). KADS aims to be a general approach, so it can also be suited for knowledge
processing for hybrid modeling. However, since the type of knowledge that is available and
its application are fairly clear, KADS may be too extensive.

Sestito and Dillon (1994) claims the following structures of knowledge are frequently em-
ployed by the problem solver:

• Heuristics or rules of thumb.

• Stereotypes, that are used to designate typical examples of some objects or situations.

• Solution hierarchies. These are frequently associated with the level of detail the prob-
lem solver wishes to deal with at one time.

• Procedures, that represent explicitly defined solution strategies and algorithms.

1 KADS may have originally started life as an acronym, but uncertainty appears to have developed
about what it is an acronym of, and it is generally used as a proper name
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• Pattern matching to check if conditions are satisfied.

• Building a model and/or reasoning with that model.

• Reasoning with primary case material. This knowledge can be reduced to a set of
heuristics because the knowledge is highly context dependent. This reasoning is often
associated with legal domains, but it also appears in other areas such as patient care.

A more recent approach from the field of process technology and fault diagnosis in partic-
ular divides knowledge into three categories. First, there is categorizing knowledge, where
(mostly numerical) data is divided into categories (”low”, for example) that provide a basis
for further interpretation. Second, there is subdividing knowledge. Subdividing knowledge is
knowledge about subdividing a process into autonomous units. This can be physical process
units, but also specific phenomena. The final category is hypothesis testing knowledge. This
is knowledge about how process variables are related to the behavior of the process.

These views all have some aspects in common. The different interpretations are caused by
the different backgrounds and fields of application. About these similarities, the following
can be said. Categorizing knowledge corresponds to Sestito’s pattern matching knowledge
and has some overlap with stereotyping. These are specific examples of compiled knowledge.
Furthermore, subdividing knowledge can be interpreted as the ability to distinguish hierar-
chies, such as with Sestito’s solution hierarchies. Reasoning with primary case material and
hypothesis testing are both variants of the same compiled knowledge structure.

3.4.3 Knowledge contents

While information about the type and the structure of knowledge is important because
it provides the context in which the knowledge must be elicited, the actual contents of the
knowledge are obviously also important. The final model will be based on the contents of this
knowledge. With the model structure in mind, care must be taken to elicit useful knowledge
from the right person.

The contents of the knowledge a person has is highly dependent on the job of the person.
Process engineers are likely to have knowledge that is deep and which is complemented with
compiled knowledge about process behavior that is appropriate for the given process. The
knowledge is mainly process descriptive. They have the ability to subdivide the process into
logical units or distinguish structures. This represents deep knowledge is very useful during
problem definitions, process analysis and model structure design.

Compiled knowledge that operators may have is quantitative and thus is useful for identifi-
cation. The knowledge that will be available will mainly be concerning process control. The
knowledge an operator has must be viewed in context with the proposed model structure and
the task the operator has. For example, if an operator performs mainly supervisory control
tasks, the knowledge must be viewed with regard to the process including its control struc-
ture. If an operator controls a variable manually, the operator acts as the controller and then
is part of the control loop. The knowledge then also needs to be viewed with regard to the
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process including its control structure, but the knowledge in this case is much closer to the
actual process. The knowledge and its application in hybrid model identification needs to be
approached in a different way.

3.4.4 Knowledge elicitation

The actual elicitation of the knowledge concerns the acquisition of the knowledge from
the human and recording this knowledge into an appropriate format. In knowledge elicitation,
several phases can be distinguished (Jansen van der Sligte, 1999):

• Problem definition.

• Problem analysis.

• Knowledge acquisition and recording.

• Evaluation.

Problem definition and analysis

The goal of the first phase is to determine the context of the problem and to gain initial
information about the process. This information is general in nature and provides information
about the process structure and the modeling problem. This phase also investigates which
human knowledge is available. A plant visit may also be beneficial to gain insight in the
problem.

An appropriate knowledge acquisition technique needs to be used with respect to the knowl-
edge. This is especially important for compiled knowledge. With hybrid modeling, a fuzzy
model is the most appropriate structure to record compiled knowledge. This means that the
choice of the knowledge acquisition technique is limited to those that are suited for recording
the knowledge in fuzzy systems.

Knowledge acquisition and recording

Common knowledge acquisition techniques are based on interviews between a ”knowl-
edge engineer” (who builds the knowledge based system) and the ”expert” and have been
discussed extensively (see, for example, (Hart, 1992; Tansley and Hayball, 1993)). Different
interviewing techniques are used; well known examples are the focused interview (where the
interview is prepared in detail by the knowledge engineer), the structured interview (where a
few topics are probed in depth by continuously asking for clarification and justification) and
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the tutorial interview (where the expert outlines the main themes and ideas of his knowledge
domain).

Different variations aside, interviewing has been widely used as a basic knowledge acquisi-
tion mechanism (Sestito and Dillon, 1994) and it has been found by some researchers to be
among the most effective. For acquiring deep knowledge, a focused interview usually will
suffice. Based on the initial knowledge the knowledge engineer has obtained, an interview
can be prepared to acquire information about variables, subprocesses, relations and strate-
gies. The knowledge can simply be recorded by making notes or by designing a behavioral
diagram.

More elaborate approaches have been developed for acquiring compiled knowledge. For
recording this knowledge into fuzzy systems, the repertory grid and its variations are ap-
propriate techniques. The expert’s view of the problem and its domain is represented in a
grid, where the first row is filled with elements that represent conclusions or solutions to the
problem. The first column contains constructs (properties) that usually are bipolar (low/high,
big/small). The rest of the grid is filled with a level of truth for a construct, given an element.
The level of truth is given by a number between 1 and 5, where 1 and 5 represent the two
poles of the construct. The grid provides a means to reveal patterns and derive decision rules.

Two variations on the repertory grid that have been designed to build fuzzy systems are
Knowledge Acquisition for Fuzzy Expert Systems approach or KAFES (Hwang, 1995) and
the Fuzzy Associative Memory or FAM (Marsh, 1994). In the KAFES grid, the constructs
consist of variables and there corresponding bipolar values, described by linguistic values.
The grid is filled with a number representing the linguistic value, given an element. The
number denotes a linguistic value between the two poles. For example, if the bipolar value of
a variable is ”low/high”, -2 denotes ”very low”, 1 denotes ”high” and 0 denotes ”normal”. In
addition, a degree of certainty can be introduced. The grid forms the rule base; each column
in the grid represents a fuzzy rule. A drawback of the approach is that all the premises for a
conclusion are captured in one rule. In other words, each consequent part of the fuzzy model
appears only once in the model, which may result in restrictions in flexibility that are not
desirable.

For simple problems, the Fuzzy Associative Memory is a good alternative. All possible
relations between input and output variables are showed in the grid, two inputs and one
output at a time. The possible (linguistic) values of the two input variables are listed in the
first column and the first row. The grid is filled with a linguistic value of the output variable,
given the combination of the values of the two input variables. The grid is not very suitable
for systems with more than two input variables. However, the class of systems with two input
variables is very common and it is likely that an expert usually does not monitor more than
two input variables at a time. When using more than two input variables, a FAM needs to
be constructed for two inputs at a time, while keeping the other variables constant. Also, a
hierarchical model could be build to describe the multiple input single output system.

The disadvantage of using the KAFES approach is that the expert needs to ”reason back-
wards”: given a conclusion the expert needs to distinguish premises that result in this con-
clusion. Most process operators or engineers are not used to reasoning this way, which may
result in inaccuracy in the knowledge that is elicited. In addition, it is difficult to see from the
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KAFES grid whether the obtained knowledge is complete. For problems where the several
conclusions can be drawn from similar premises (such as medical diagnosis, where a disease
is characterized by one set of different symptoms, whereas one symptom can be the result of
many different diseases), KAFES may be a practical approach. For elicitation problems such
as presented in this work, however, the FAM approach is better suited and more simple to
apply.

Evaluation

When the knowledge based system is built, its performance can be judged by verification
and validation. This is more important for systems based on compiled knowledge than sys-
tems based on deep knowledge. With verification, it is checked whether the system is build
rightly; the proof of certain logical properties. Validation checks whether the right system is
build; the determination of a homomorphism between a system and its representation.

Gonzalez and Dankel (1993) describes validation and verification of expert systems in more
detail. His discussion is relevant for fuzzy systems also. In his view, verification concerns
investigating the consistency of the rule base and the completeness of the rule base, while val-
idation deals with the role of the expert system and determining the measure of performance
for that system. In addition, more detailed information of the evaluation of fuzzy systems can
be found in Marsh (1994) and Rausis (1998). A detailed discussion, however, goes beyond
the scope of this work.

3.4.5 Using knowledge during identification

The use of compiled (quantitative) knowledge for identification concerns recording the
knowledge into a fuzzy model. This model can be used in hybrid model design to determine
subprocess behavior or can be used for hybrid model parameter identification. In doing so,
under the assumption that a fuzzy model that contains the quantitative knowledge is available,
a distinction is made betweenmodel matchingandmodel embedding.

Model matching

In model matching, the fuzzy model that contains the expert knowledge (denoted as the
”expert model”) is transformed in such a way, that it matches the designed hybrid model
structure (figure 3.4). If the hybrid model structure is designed in advance, it is likely that
the expert model will not describe the input-output behavior that is required. There will
be some form of model overlap, which has to be eliminated. Two different approaches for
accomplishing this have been distinguished, based on the form of the expert model.
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Figure 3.4: Model matching. The expert model is transformed to match the physical framework

In the case that the expert model describes (part of) the process behavior as opposed to control
actions,parallel model matchingis applied. The expert model is placed in parallel with the
model and is used as a data generator that describes part of the process behavior. This data
then can be used the same way as ordinary process measurements are used. To eliminate
model overlap or to obtain the correct input-output mapping that is required for identification
of the fuzzy submodel, the data needs to be transformed. This can be done using estimation
techniques, which will be discussed in chapter 4. Example 3.1 illustrates a case where parallel
model matching can be applied.

Example 3.1 Consider a system for which the following hybrid model structure has been designed:

ẋ1 = f1(x1, x4, u, θ1) (3.1)

ẋ2 = f2(x1, x2, x4, u, θ2) (3.2)

ẋ3 = f3(x1, x3, x4, u, θ3) (3.3)

ẋ4 = f4(x4, u) (3.4)

The parametersθ are described by the following algebraic equations:

θ1 = f5(x1, θ4) (3.5)

θ2 = f6(x1, x2) (3.6)

θ3 = f7(x1, x2) (3.7)

θ4 = f8(x1, x2) (3.8)
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Figure 3.5: Serial model matching. The expert model Ce is placed in series with the hybrid model,
consisting of a known part P and unknown part Pu (a)

Functionf5 is assumed to be unknown and will be described by a fuzzy equation. An expert model
fe is available, which describes the change inx1, ẋ1, as a function ofx1, x2, x4 andu:

ẋ1 = fe(x1, x2, x4, u) (3.9)

If this expert model is placed in parallel with the hybrid model structure, it can be seen that the
model overlap is given by equations 3.8 and 3.1. The expert model can be transformed to provide
a mapping of the form given by equation 3.5, by using parallel model matching.2

If the expert model is a controller modelCe, where the expert is part of the control loop,serial
model matchingcan be applied. In this case, the expert model is in series with the process
model. In serial model matching, the model structure is converted to transfer functions. The
fuzzy parts of the hybrid model are concentrated to form an unknown blockPu that is placed
in series with the known part. If the closed loop transfer functionH is available or can be
identified, this block is the only unknown block of the system and the problem can be solved.
Figure 3.5 illustrates this.

If the closed loop transfer functionH is defined as the transfer function between the setpoint
and the process output, the unknown part can be calculated as:

Pu = C−1
e P−1 H

1 − H
(3.10)

whereP is the known part of the model,Ce is the expert model andPu is the unknown part
of the model.

This requires inversion of the expert model as well as the known process model. Several
techniques for inverting fuzzy models are available (both exact (Baranyiet al., 1997; Baranyi
et al., 1998; da Costa Sousa, 1998; da Costa Sousaet al., 1997) and inexact (da Costa Sousa
et al., 1997; Fischer and Isermann, 1996; Jordan and Rumelhart, 1992)), but inversion can
be omitted if the closed loop transfer function is defined as the transfer function between the
process input disturbances and the process output:

Pu = P−1 H

1 − CeH
(3.11)
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Example 3.2 illustrates a case where serial model matching can be applied.

Example 3.2 Consider the system from example 3.1. Assume that instead off5, f4 is unknown.
The connection with the known part of the model is serial. Assume that an expert modelCe is
available that describes the following behavior:

u̇ = Ce(ex1) (3.12)

in whichex1 is the error ofx1 with respect to its setpointx1,sp.

The unknown functionf4 can be determined using serial model matching. Interpretx4 as a system
input to equationf1. The known process modelP consists of a combination off1, f5 andf8. u
andx2 are interpreted as additional inputs. The controller C is given by the expert modelfe. The
closed loop transfer function is defined as:

x1 = H(x1,sp) (3.13)

while in addition
x1 = P (x4, x2, u) (3.14)

and
x4 = Pu(u) (3.15)

The unknown model part can be determined using equation 3.11, ifP−1 can be determined with
respect tox4. 2

Although the approach can successfully be applied to simple problems, the flexibility is lim-
ited. First of all, the approach is only useful if the unknown part is dynamic. If the unknown
part is static, simpler approaches can be used. In addition, the connection between the known
and unknown parts needs to be linear. If this is not the case, the system can be linearized,
but this may result in a relatively complex model structure and limited model validity. Fur-
thermore, the inversion of the known part can be cumbersome or impossible, certainly when
dead time is present.

Model embedding

With model embedding, the expert model is the starting point for hybrid model develop-
ment. The expert model is supplemented with the physical model framework, which needs
to be transformed if model overlap is present. This way, the expert model is embedded in
the physical model framework, instead of transforming it to match the framework structure.
Model embedding is illustrated in figure 3.6.

If the expert model describes control actions, it needs to be inverted prior to embedding. In
this case, it is required that the controller contains model information. This is the case for an
internal model control structure, but may not always be true. Example 3.3 illustrates model
embedding.
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Figure 3.6: Model embedding. The expert model is embedded by transforming the physical framework

Example 3.3 Consider the system presented in example 3.1 and also assume thatf5 is unknown.
In addition, assume that the same expert model is available:

ẋ1 = fe(x1, x2, x4, u) (3.16)

This model can be embedded in the physical framework by replacing equations 3.1, 3.5 and 3.8 by
equation 3.16.2

3.4.6 Remarks

Although deep or qualitative knowledge can easily be applied in hybrid model design,
the use of compiled or quantitative knowledge is complex. Serial model matching has lim-
ited applicability, while model embedding is not always desired if a specific hybrid model
structure is designed in advance.

Since in modern plants most of the quantitative information is registered, it is recommended
to use this registered information instead of eliciting it from humans. Humans base their
experience on the measurements that are available. In addition, information may be lost
during the elicitation process which may result in inaccuracy.

This makes the hybrid modeling approach mostly data-driven, but it should be emphasized
that using deep knowledge to determine the model structure and dependencies is valuable and
that it is worthwhile to investigate this knowledge when solving a hybrid modeling problem.
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3.5 Mathematical considerations

For process simulation or online process behavior prediction, the model needs to be avail-
able in dynamical form. Usually, such systems are solved numerically. A mathematical
advantage of using a dynamical physical framework with algebraic fuzzy equations (which
results in a model in DAE form) is that there are no restrictions with respect to sampling
time or solution method when solving the model. If autoregressive fuzzy submodels are used
to describe process dynamics, these restrictions do apply, resulting in a less flexible model
structure.

The type of fuzzy model used here is the Sugeno (TSK) type (Takagi and Sugeno, 1985).
This type of model can be interpreted as a collection of local linear submodels. This type of
relation is extremely suitable to describe highly nonlinear relations based on process data. It
is shown that TSK fuzzy functions are universal function approximators (Ying, 1994). Fur-
thermore, because of its local linear properties, simple algorithms can be used for parameter
estimation, such as the least squares approach (Babuˇska, 1996). Many good algorithms for
automatic identification of TSK models from data sets are available, including algorithms
with structure optimization.

Although linguistic (or Mamdani) fuzzy models are easily interpretable for humans, they
usually require more fuzzy rules than a TSK model to describe the same phenomenon, which
makes them more complex. The advantage of using TSK models is reduced complexity,
which makes the models more comprehensible. If the main source of data is human experi-
ence, Mamdani models could be easier to identify than TSK models. Since the main source
of data for the identification are process measurements, TSK models are more suitable than
Mamdani relations.

3.6 Concluding remarks

The structure of a hybrid fuzzy-first principles model consists of a framework of dynamic
mass and energy balances, supplemented with algebraic and fuzzy equations, formulated
in state space form. The advantage of such a structure is that it combines a high level of
interpretability with the expectation of good extrapolation properties. Because fuzzy logic
can deal with nonlinearity in a simple way, hybrid models are suited for nonlinear processes
with a large operating regime, such as batch or distributed parameter processes.

Three main sources of information can be used to build hybrid models: first principles, pro-
cess data and human expertise. First principles provide information about the physical frame-
work, while the behavior observed from process data can be used to identify the fuzzy rela-
tions. Human expertise is mainly a source of structural information; process data is more
suitable for quantitative information.

For building hybrid models, a structured modeling approach has been designed which con-
sists of several independent steps, in which the modeling problem is reduced to several
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smaller and simpler problems which can be solved individually. This is an advantage over a
global approach, in which the modeling problem is approached as a whole.

The modeling approach consists of three phases. In the first phase, the model objective
and quality requirements are formulated. In the second phase, the hybrid model structure is
designed and subprocesses are distinguished. Submodels for these subprocesses are subse-
quently identified and combined to form the hybrid model. The final phase determines the
model quality and evaluates if the model meets the requirements. Model quality is determined
by evaluating model performance, complexity, interpretability and the sources of information
that were used.

The modeling approach is not a strict set of rules that has to be followed. It serves as a
guideline for developing hybrid fuzzy-first principles models and its execution depends on
the modeling problem at hand. The issues discussed in this chapter should, however, provide
the modeler with a basis for hybrid model structure development.

The following chapter will present the design phase of the modeling approach in more detail.
Chapter 5 will discuss general hybrid model properties.
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Hybrid model design
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Figure 4.1: Design phase. The problem is reduced to several smaller independent problems, which are
solved sequentially

The design phase of the hybrid modeling procedure is the ”work horse” in hybrid model
development. This chapter will discuss the different steps in hybrid model design. The
first step is basic modeling, in which the hybrid model structure is determined. In addition,
the process is divided into several smaller ”subprocesses”, which are modeled individually.
Basic modeling is followed by data acquisition, subprocess behavior estimation, submodel
identification and submodel integration. The design phase is visualized in figure 4.1. For
each step, different tools will be presented and their application will be discussed.

Throughout the chapter, the steps will be illustrated with a fed-batch bioreactor for penicillin
production. For this process, a simulator is available which will be used to represent the
actual process. The case is simple and does not represent an actual hybrid modeling problem.
However, the process does posses the properties for which hybrid modeling is useful: a large
operating regime and uncertainty about the phenomena that play a role, such as biomass
growth. In addition, the fuzzy submodels that will be developed are double input single
output systems. This allows simple visualization of the model and therefore provides a better
understanding of the results. Because of the simplicity, it provides a good basis for illustrating
and evaluating the various tools that are used during hybrid model design. The case will
therefore be presented as an illustration.
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4.1 Basic modeling

Basic modeling is the first step of the design phase: it determines the hybrid model struc-
ture and distinguishes the subprocesses. The following steps can be distinguished.

Step 1: Process description and information analysis
The function of the process is formulated and the available information is listed. It has prac-
tical and economical advantages if a model can be built on the readily available process
information (that is, information that is available without performing specific experiments),
be it experimental data or human expertise. This will not always be possible, but the avail-
able information should be analyzed before the model structure is designed. This step should
also inform the modeler if, based on the readily available information, a model can be built
in accordance with the model objectives or that additional experimentation is needed. The
following steps should be executed within the context of this analysis.

Step 2: Process hypotheses
Before the system can be described with mathematical equations, the physical behavior needs
to be described. Knowledge of basic principles from chemistry and physics can be used to
denote qualitative relations. These hypotheses serve as the basis for the formulation of the
mathematical equations.

Step 3: Process structure
The process is divided in subprocesses and the connections between these are determined.
The subprocesses of the model denote the entities that will be described by a certain equation
or a set of equations. Examples are chemical reaction, mass or heat transfer. These entities
are combined using mass or energy balances (the model framework). The inputs and outputs
of the model are also denoted. This step yields a behavioral or data flow diagram (Yourdon,
1989), in which the relations between the entities are shown.

In this step, the fuzzy and first principles part of the model are denoted. Based on model
objectives, first principles, process expertise and the experience of the modeler, it can be
decided if it is feasible to describe certain effects using physical equations. In addition, it
can also be decided to ”lump” certain effects, too complex to describe physically, so that
transparency is guaranteed. At this stage, thestructure of the hybrid modelis determined.

Step 4: Basic equations
The mass and energy balances can be drawn up with the help of the determined hypotheses
about the behavior. Algebraic equations describing the driving forces and equilibria can also
be determined. Model parameters are not determined at this stage. This is also the case for
the fuzzy equations. These will be determined in the identification step.

The result of the basic modeling step is the model structure defined by the basic equations.
The subprocesses that will be modeled with fuzzy logic are also determined. Appropriate
process data can now be collected to facilitate model identification.
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In the following example a hybrid model structure for a fed-batch bioreactor for penicillin
fermentation will be developed. This reactor will serve as an example throughout the rest of
the chapter and the model is based on the information provided in Thompson and Kramer
(1994).

Example 4.1 Assume that the problem definition phase has been completed. The model objective
is to describe the penicillin concentration during a batch run, based on process inputs and initial
conditions. The model should be based on global physical principles. In order to accomplish this,
the following key variables have been distinguished: the substrate concentrationS, the biomass
concentrationX, the penicillin concentrationP and the volumeV .

Step 1: Process description and information analysis
At the beginning of a batch, a small culture of biomassX is present. The tank reactor is filled
slowly with a feedF that contains a substrateSF , which causes the biomassX to grow and
produce penicillinP . The feed rate is constant. The tank is stirred and a typical batch run lasts
200 hours. Measurements of the biomassX, substrateS, productP and volumeV as well as the
inputsF andSF are available every hour.

Step 2: Process hypotheses
Based on the available literature (such as (Bastin and Dochain, 1990; Dunnet al., 1992)), the
general mechanisms that play a role in the process can be identified. The key variables can be
described directly by state equations.

The volume balance is straightforward; the accumulation is given by the feed rateF .

The substrateS is added by the feed stream and is consumed by the biomass. This consumption is
used for biomass growth biomass maintenance and penicillin production. In addition, the dilution
influences the substrate concentration.

The biomass accumulation is determined by biomass growth, biomass decay and a dilution factor
that is a result of the changing volume. Since a detailed description of these processes is not
required by the model objectives, the assumption is made that no dynamics are present in these
phenomena and that they can be described by algebraic equations. This is common practice (Dunn
et al., 1992).

The accumulation of the penicillin concentration, finally, is determined by the production rate,
dilution and product decay, which is assumed to be constant.

Although actual operation and behavior of these kind of processes are more complex than sug-
gested by this model, its simple nature is useful for illustration purposes and procedure devel-
opment. For example, the following phenomena also characterize the actual process but are not
modeled:

• Growth rate decreases with biomass due to oxygen diffusion limitations.

• Cell decay becomes appreciable at high biomass concentration.

• Maintenance energy of the culture depends on biomass concentration.

• The penicillin product decays as the culture ages.

Step 3: Process structure
The process hypotheses can be organized in a data flow diagram which represents the hybrid model
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Figure 4.2: Data flow diagram hybrid model bioreactor

structure, as shown in figure 4.2. It is assumed that the equations that govern the biomass growth,
the biomass decay and the production of penicillin are unknown. Biomass growth and decay are
therefore lumped to form a net growth rate. The behavior of the net growth rate and product
formation rate will be derived from the measurements. Using these measurements, fuzzy models
will be built that describe the rates.

Step 4: Basic equations
The set of equations for the hybrid model can now be set up. The accumulation balances that form
the physical framework are given by:

dX

dt
= X(α − D) (4.1)

dS

dt
= −σX + (Sf − S)D (4.2)

dP

dt
= qpX − P (D + K) (4.3)

dV

dt
= F (4.4)

The supplemental algebraic equations are given by:

D =
F

V
(4.5)

56



α = ffuzzy(S, X) (4.6)

qp = ffuzzy(S, X) (4.7)

σ =
µ

Yx/s

+
qp

Yp/s

+ mx (4.8)

with

mx =
mxmX

X + 10
(4.9)

and

µ =
µmS

KXX + 10
(4.10)

Here,Yx/s, Yp/s, mxm, KX andK are constants. The relation forσ is based on information from
Thompson and Kramer (1994). Now the structure is designed, the model parameters and the fuzzy
equations can be identified.2

4.2 Data acquisition

In order to be able to identify the submodels that describe the subprocesses, appropriate
process data needs to be available. This data can consist of historical plant data or it can be
obtained by performing experiments that are designed especially for this purpose.

When designing experiments, care has to be taken that the data will best reveal the behavior
of the subprocess. Experiments can be designed more effectively when knowledge that is
available is used. In addition, exploratory experiments can be useful. Additional experiments
are then designed on the basis of these initial results.

Experiments based on factorial design provide a useful way to measure behavior. In factorial
design, the process behavior is measured at different levels of certain variables (or factors).
Experiments are carried out for all possible combinations of the factors. To limit the number
of experiments for systems with many factors, fractional factorial design can be used (Boxet
al., 1978). In this approach, suitable fractions of full factorial designs are generated based on
redundancy information.

Research on experiment design based on statistical methods is abundant and many text books
about experiment design are available. See for example Boxet al. (1978).

Example 4.2 Consider the bioreactor from example 4.1. For the identification of the two fuzzy
relations (equations 4.6 and 4.7), sufficient measurements are needed in order to obtain the behavior
of the relations. This means that the data needs to be distributed over a sufficiently large domain in
the input space, so that all operating conditions are covered.

The input space is the same for both relations; the input space is formed byS andX. Figure 4.3 (a)
shows the trajectory of a typical batch run in the input space. In order to obtain a good distribution,
it is assumed that several experiments can be done by varying the initial conditions and system
inputs. 16 different experiments were designed (see table 4.1) to accomplish this.
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Batch # X(g/l) S(g/l) P (g/l) V (l) F (l/h) Sf (g/l)

ID1 5.0 0.5 0.0 20.0 0.110 525
ID2 5.0 0.5 0.0 20.0 0.132 525
ID3 5.0 0.5 0.0 20.0 0.154 525
ID4 5.0 0.5 0.0 20.0 0.176 525
ID5 5.0 0.5 0.0 20.0 0.198 525
ID6 5.0 0.5 0.0 20.0 0.220 525
ID7 7.5 0.5 0.0 20.0 0.110 525
ID8 10.0 0.5 0.0 20.0 0.110 525
ID9 12.5 0.5 0.0 20.0 0.110 525
ID10 15.0 0.5 0.0 20.0 0.110 525
ID11 17.5 0.5 0.0 20.0 0.110 525
ID12 20.0 0.5 0.0 20.0 0.110 525
ID13 22.5 0.5 0.0 20.0 0.110 525
ID14 25.0 0.5 0.0 20.0 0.110 525
ID15 27.5 0.5 0.0 20.0 0.110 525
ID16 30.0 0.5 0.0 20.0 0.110 525
VAL1 8.25 1.0 0.0 20.0 0.165 525

Table 4.1: Initial conditions for batch runs

No actual reactor setup was available to obtain the measurements. Instead, a simulator was used
to generate the measurements. The simulator model is taken from Thompson and Kramer (1994).
Noise was added to the simulation results. A detailed description of the model and the noise that
was added is given in appendix B.

The distribution in the input space that was obtained is shown in figure 4.3. Since the outputs of
the fuzzy relations,α andqp, cannot be measured, they are estimated from the states of the model.
Therefore, in addition toS andX, P andV are also recorded.2
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Figure 4.3: Input space distribution of a typical batch run (a) and input space distribution of experiments
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4.3 Subprocess behavior estimation

Data preprocessing is an almost unavoidable step during process modeling. Obvious ap-
proaches such as filtering, scaling or data reduction can be applied, but more importantly,
estimation techniques provide ways to obtain information about variables or parameters that
cannot be measured directly. In hybrid modeling, this is the case for many subprocess pa-
rameters, such as reaction rates. Estimates of these parameters can then be used during
the identification process. Over the years, much research has been done and numerous pa-
pers and text books have appeared on the subject (see for example (Eykhoff, 1974; Luy-
ben, 1990; Ramirez, 1994; Seinfeld and Lapidus, 1974)). For modeling of chemical pro-
cesses, the techniques should be able to estimate nonlinear and time varying variables or pa-
rameters. This section will discuss two approaches well suited for the problem: the extended
Kalman filter and the PI-estimator.

4.3.1 Kalman filtering

The well-known Kalman filter (Kalman, 1960) was originally developed as a state es-
timator, but can also be used for parameter estimation. The discussion of the filter will be
presented in discrete form (since measurements mostly will be available in discrete form).
Consider the following linear system:

xk+1 = Φxk + Ψuk + wk (4.11)

yk = Hxk + vk (4.12)

wherexk is the process state vector at time stepk, uk is the process input vector,Φ, Ψ are
state transition and input transition matrices, respectively,yk is the model output vector,H
is the measurement matrix andwk,vk are vectors assumed to be a sequence of white noise
with zero crosscorrelation. The covariance matrices for these noise vectors are given by

E[wjwT
i ] =

{
Qij for i = j
0 for i 6= j

(4.13)

E[vjvT
i ] =

{
Rij for i = j
0 for i 6= j

(4.14)

Q andR are diagonal matrices. Assume an estimate of the process statex̂−
k is available. The

hat denotes estimate and the super minus indicates that it is an estimate prior to assimilating
the measurement at time stepk. Let

e−k = xk − x̂−
k (4.15)

P−
k = E[e−k e−T

k ] (4.16)

When an estimate is made, an observer equation can be used to improve the estimate in the
following way:

x̂k = x̂−
k + Gkik (4.17)
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ik = yk − Hkx̂− (4.18)

with ik the innovation andGk theKalman gainat time stepk. The Kalman gain is given by
the following equation(Brown and Hwang, 1992):

Gk = P−
k HT

k (HkP−
k HT

k + Rk)−1 (4.19)

and the corresponding estimation covariance matrix forx̂k is given by:

Pk = (I − GkHk)P−
k (4.20)

The optimal estimatêxk can thus be calculated. To determine the estimate at the next time
step, the process state can be projected ahead using equation 4.11. Its error can be written as:

ēk+1 = xk+1 − x̂−
k+1 (4.21)

= (Φxk + Ψuk + wk) − Φx̂k − Ψuk (4.22)

= Φek + wk (4.23)

which can be used to calculate the estimation error covariance matrix:

P−
k+1 = ΦPkΦT

k + Qk (4.24)

The estimate and its covariance are now available, so the Kalman gain can be calculated for
this estimate to obtain the optimal estimate. This process is repeated for each time step.

The filter equations were derived for linear systems. Most systems under investigation here
however, are nonlinear. The filter can be adjusted to be able to deal with nonlinear systems
by introducing a state transition matrixΦ(xk,uk) that calculates the state transition for each
time step. The same can be done for the input transition matrix. This results in a local
linearization of the system. Equation 4.11 then becomes:

xk+1 = Φ(xk,uk)xk + Ψ(xk,uk)uk + wk (4.25)

The standard Kalman filter configuration is shown in figure 4.7.

Parameter estimation

Parameters or parameter vectors of the process model can also be estimated using the
Kalman filter. This can be done by introducing them as additional system states. This way,
they can easily be incorporated in the general filter structure. Additional state equations of
the following form are introduced:

dθ

dt
= 0 (4.26)

in which θ denotes the parameter(vector). By setting the derivative zero, the parameters are
assumed to be constant. However, the filter is also able to estimate time-varying parameters
using this approach. The quality of the estimates of time-varying parameters depends on the
tuning of the filter.
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Observability and robustness

In order to determine the state of the process uniquely form a series of measurements
over the interval[t0, tf ], the process needs to be observable. Consider the system described
by equations 4.11 and 4.12 and do not consider the noise vectors (this is the noiseless process
model). Because of its recursive structure, the state equation can also be written as:

xk+1 = Φkx0 + Ψku0 (4.27)

with x0 andu0 the state and input vector att = 0. From the measurement equation, the
process output vector can be represented by:

yk = HΦkx0 (4.28)

The linear system is calledobservablewhen a unique representation ofx0 in terms ofyk

is possible. When the system is observable, all the estimates can be determined uniquely
with the measurement system. The observability is judged by evaluating the rank of the
observability matrix:

O0,kf
=

kf∑
i=0

(Φi)T HT HΦi (4.29)

with kf the number of measurements. The system is observable if the observability matrix is
non-singular. For non-linear systems, the observability can be calculated by replacingΦ with
Φ(xk,uk). Instead of usingΦk, the product of the various state transition matrices from time
step0 to time stepk is used:

k∏
i=0

Φ(xi,ui) (4.30)

The robust integrity of the Kalman filter can be verified by determining a stability region
(see Ramirez (1994)). Consider the measurement perbutation slopen for the measurement
configuration of the filter and assume that the measurement covariance matrixR is diagonal.
The Kalman filter is stable for alln such that

n >
1
2
(1 − λ0) (4.31)

whereλ0 is the minimum eigenvalue of

(R1/2GT Q−1GR1/2)−1 > 0 (4.32)

The criterion imposes an upper bound on the gains in the Kalman filter. Gains much larger
than the process perbutations can cause the filter to respond too sensitive, resulting in insta-
bility. A value of equation 4.31 close to the maximum value of1/2 indicates a small region
of robust stability. If a high degree of integrity and robustness is required, thenλ0 must be
maximized by the choice ofQ andR.
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Figure 4.4: Kalman estimates of α (a), X (b), qp (c) and P (d). Lines indicate estimates, dots measure-
ments.

Filter tuning

Although matricesQ and R are defined as covariance matrices, they can be used to
tune the Kalman filter and improve the performance. This is a trial and error process. The
innovation (equation 4.18) is an important tool for tuning the filter. Since the noise vector
wk in equation 4.11 is assumed to be a sequence of white noise, it is a good indication that
the filter is tuned well if the innovation is reduced to a sequence of white noise. This can be
checked by calculating the autocorrelationρ in the innovation.

Example 4.3 A simple Kalman filter can be designed to estimateα andqp for the bioreactor. The
measurements ofX and P are sufficient for the system to be observable. The system can be
represented as:




Ẋ

Ṗ
α̇
q̇p


 =




(α − D) 0 0 0
qp −(D + K) 0 0
0 0 0 0
0 0 0 0







X
P
α
qp


 (4.33)

in which

D =
F

V
(4.34)
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The measurement matrixH for this system is given by:

H =

[
1 0 0 0
0 1 0 0

]
(4.35)

and the innovation matrix is defined as:

i =

[
X
P

]
−

[
¯̂
X
¯̂
P

]
(4.36)

in whichX andP are the measurements of the biomass concentration and the product concentra-

tion, while ¯̂
X and ¯̂

P are their estimates.

The filter was tuned by setting the diagonals of the measurement noise covariance matrixR and
process noise covariance matrixQ as follows:

Q =




1e − 4 0 0 0
0 1e − 4 0 0
0 0 5e − 6 0
0 0 0 7e − 5


 , R =

[
0.2 0
0 0.01

]
(4.37)

These settings were used for runs ID1 to ID16 and corresponded with an average stability border of
0.49, which indicates a small region of robust stability. The estimates, however, were found to be
of acceptable quality. Estimation results for run ID1 are shown in figure 4.4 and the autocorrelation
in the innovation is shown in figure 4.5. For clarity, only some of the measurements are shown.2

4.3.2 PI-estimation

A simple alternative to the Kalman filter for nonlinear parameter estimation is the PI es-
timator which is similar to the PI feedback controller (Van Lithet al., 2001). It has many
similarities with the Kalman filter, but is much easier to set up. Consider the nonlinear pa-
rameter of the system under study as a system input. The effect on the behavior of the model
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of this new ”input” is dictated by the model equations (as with normal system inputs), while
the nonlinear time-varying behavior of the parameter itself needs to be determined by some
other means.

Since the parameter is viewed as an input, this input can be used tocontrol the behavior of
the model. This behavior needs to be the same as the actual physical behavior of the system
described by measurements. The actual behavior can be seen as a trajectory that the model
needs to follow. The correct nonlinear estimation of this new ”input” will result in correct
model behavior.

This task can be accomplished by designing a simple feedback controller which controls the
behavior of the model by manipulating the nonlinear parameter. The controller output serves
as an estimate for the behavior of the nonlinear parameter. This is only true if the complete
initial state is known. The controller takes the difference between the controlled model output
and the desired trajectory (i.e. the innovation) as input. The controller is chosen to be a
familiar PI-controller for fast response and elimination of offset:

θ = L1i + L2

∫
idt (4.38)

whereθ is the parameter vector andi is the innovation.L1 andL2 are diagonal matrices of
appropriate dimensions (with respect to the parameter vectorθ).

The ”control scheme” is shown in figure 4.6. In this figure, the ”control action” is concate-
nated to the input vector of the system to obtain the model input vectoru∗:

u∗ =
[

u
θ

]
(4.39)

Following more conventional PI-controller notation, the tuning parameters, the elements on
the diagonals ofL1 andL2, can be written in terms of the controller gainK and integral time
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constantτi as follows:
l1,ii = K (4.40)

l2,ii =
K

τi
(4.41)

Comparison with Kalman filtering

The controller interpretation of parameter estimation shows some analogies with con-
ventional parameter estimation using state estimators. If a state estimator, such as a Kalman
filter (or Luenberger observer) is used to make parameter estimations, the parameter is intro-
duced as an additional state variable (see equation 4.26). The filter configuration is shown in
figure 4.7.

In figure 4.7 (a), equation 4.26 is a part of the function blockf . Rearranging the equations
yields the configuration shown in figure 4.7 (b). The extra integral block is the state equation
for the parameter (equation 4.26), which is taken outside the function blockf . This results in
G being replaced with a different gain matrixG1 and the introduction of an additional gain
matrixG2. Thus figure 4.7 (a) and (b) are different representations of the same Kalman filter.

The configurations in figure 4.6 and figure 4.7 (b) are quite similar with respect to integral
action. But there are also some differences. Consider a single parameterθ. First of all, in
the controller configuration there is an additional proportional term that adjusts the estimates
for θ. In the Kalman filter, this term is not present. Secondly, the matrixG1 of the Kalman
filter in figure 4.7 (b) adjusts the estimates of the complete statex̂. These adjustments are
made in addition to the adjustments that are only made to parameterθ. So the estimates ofθ,
propagated through the modelf , result in estimates of̂x, which are subsequently adjusted by
the innovationi andG1. Thus this mechanism can correct estimation errors inx̂ caused by
the estimates ofθ. This mechanism is not present in the controller configuration. However,
this can be seen as an advantage, because in the controller configuration,x̂ is only calculated
accurately if the estimates ofθ are accurate.

Obviously, the calculation of the gain matricesG, L1 andL2 differs. The different gainsL1

andL2 are fixed and are set using PI tuning procedures. In practice, tuning of the Kalman fil-
ter is not done by adjustingG, which is calculated by the Kalman equations, but by adjusting
the noise covariance matricesQ andR, from whichG is calculated.

Controller configuration

When the controller configuration is used in multiple parameter estimation problems,
appropriate ”control loops” need to be chosen. In other words, for each parameter which state
is used to obtain the estimates has to be decided. Analysis has to be done to determine the
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Figure 4.7: Standard (a) and alternate (b) Kalman filter configuration
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interactions between the various parameters and states, so that sensible control loops can be
chosen. Using therelative gain array(see Bristol (1966)), pairs of inputsθj (the parameters
that have to be estimated) and outputsxi (the states that are ”controlled” by the parameter
estimates) can be selected in order to minimize the amount of interaction among the resulting
loops.

If the static gain matrixGstatic of the transfer functions of the system is available, the relative
gain arrayΛ can also be calculated as follows (Roffel and Chin, 1987):

λij = gij(G−1
static)

T
ij (4.42)

in which gij denotes theij-th element of the static gain matrixGstatic andλij is theij-th
element of the relative gain arrayΛ.

The relative gain array provides a measure of the interaction based on steady-state consid-
erations. Therefore, the rule given above for the selection of loops does not guarantee that
the dynamic interaction between the loops will also be minimal. The relative gain array can
be replaced by its dynamic counterpart to account for this (Roffel and Chin, 1987). The
interaction can then be calculated for different frequencies.

Example 4.4 The parametersα andqp of the bioreactor can be estimated by two PI-controllers.
The modelf (see figure 4.6) is formed by the mass balance for the biomass concentration (equa-
tion 4.1) and the product concentration (equation 4.3); both states are measured and the parameters
α andqp directly influence the behavior of these states.

Form the equations, it is obvious to control the biomass concentrationX with α and the product
concentrationP with qp. This is also confirmed by the relative gain arrayΛ. Define the manipu-
lated variable vector as [

α
qp

]
(4.43)

and the controlled variable vector as [
X
P

]
(4.44)

To determine the static open loop gain matrixGstatic, the nonlinear dynamic system can be lin-
earized using a first order Taylor expansion and transformed to deviation variables, assuming sta-
tionary operation. Although the system is non-stationary, the only purpose of the relative gain array
and thus the open loop static gain matrix is to determine which input should control which output,
so this assumption can be made. The linearization resulted in the following static gain matrix:

Gstatic =

[ −X0
α0−F0/V0

0
qp0

F0/V0+K
−X0

α0−F0/V0

X0
F0/V0+K

]
(4.45)

in which the subscript ”0” denotes the working point where the linearization was made. Element
ij of Gstatic is the open loop static gain of outputi with respect to inputj. Using equation 4.42,
the relative gain array becomes:

Λ =

[
1 0
0 1

]
(4.46)

The relative gain array is independent of the point of linearization and shows thatX should be
matched withα andP should be matched withqp.
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Estimator type Settings
PI-Estimator α K = 0.06, τi = 2
PI-Estimator qp K = 0.15, τi = 10

Table 4.2: PI-Estimator settings for bioreactor problem

The innovation vector is the same as for the Kalman filter. The two PI-estimators were tuned
manually. The model structure allows the estimators to be tuned separately. First, the controller
for X is tuned. Sinceqp has no influence onX, the controller forP has no influence onX, which
means that this can be done. If this controller is tuned well, the error in the estimates ofP is only
caused by the error inqp. The controller forP can be tuned subsequently.

Estimator settings are given in table 4.2. These settings were used for experiments ID1 to ID16.
The results of experiment ID1 are shown in figure 4.8.

The estimates are good; the trajectories ofX and P are followed closely. The Kalman filter
adjusts the estimates ofα as well as the estimates ofX to minimize the innovationi, whereas
the PI-estimator only uses the estimates ofα. As a result, the noise level in the estimates ofα is
somewhat higher than in the estimates made by the Kalman filter.

The PI-estimator only estimates the biomassX well if α is estimated well, making the estimates
of α plausible. A similar statement can only be made for the Kalman filter in example 4.3 if the
tuning parameters (the elements of the process noise covariance matrixQ) corresponding to the
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Figure 4.8: PI-estimates of α (a), X (b), qp (c) and P (d). Dots measurements, line estimates.
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measured states are set at low values, although in this case, some direct correction on the measured
states remains.2

4.3.3 Remarks

With regard to the computational structure, the PI-estimator shows many resemblances
with Kalman filtering. Therefore, it can be a good alternative to Kalman filtering. The re-
sults presented in the example were comparable with Kalman filter estimates. Although the
Kalman filter has versatile application possibilities in combined state and parameter estima-
tion, the PI-estimator has the advantage that it is simple, easy to use and easy to tune for
simple single or multiple parameter estimation problems and therefore may be preferred over
Kalman filtering.

4.4 Submodel identification

Submodel identification involves the design of the equations of the hybrid model. These
include the accumulation balances, algebraic equations and the fuzzy equations. The iden-
tification of the balances and the algebraic equations done in the same fashion as with first
principles modeling. This section will focus on the identification of the fuzzy equations.

In hybrid modeling, TSK type fuzzy models are used. The design of these models involves the
determination of the number of local linear models (the number of rules), the parameters of
these models or ”hyperplanes” and the operating range for which they are valid (the premise
part). The parameters of the fuzzy equations are derived from the input-output data.

Research efforts in the field of identification of TSK fuzzy models has been enormous, as
is the number of algorithms. They vary from manual design, tree search methods (Nelles,
1997) to an abundance of combinations of soft computing algorithms. It is unfeasible to
present a thorough evaluation of the different techniques. However, three different approaches
representing three different classes of identification algorithms are presented in order to be
able to give some guidance with regard to building hybrid models. They are fuzzy clustering,
genetic algorithms and neuro-fuzzy methods.

The calculation of the consequent part parameters using the three approaches is similar. The
approaches differ in the way the rule structure and antecedent membership functions are
determined. Fuzzy clustering is the most flexible. The presented approach determines the
number of rules and the premise part parameters with minimal a priori knowledge. Genetic
algorithms require more initial information. This approach searches for premise part param-
eters in a predefined search space. In addition, the number of rules needs to be specified.
Finally, the neurofuzzy approach which is presented requires a complete initial fuzzy model,
which is optimized to provide a desired input-output mapping.

For basic fuzzy set theory concepts, the reader is referred to appendix A.

69



Hybrid model design

4.4.1 Fuzzy clustering

The basic idea behind clustering is to divide a set of objects into self-similar groups
(or clusters). This similarity is often defined as a distance norm. Clustering methods are
usually based on assumptions about the geometry of the clusters, which include spheres,
lines, hyperplanes, ellipsoids, etc. Various clustering methods can be used to develop fuzzy
models. The goal of this section, however, is to present a useful approach for use with hybrid
modeling. More detailed information about fuzzy clustering can be found in Jain and Dubes
(1988), Palet al. (1997) or Babuˇska (1996).

Since TSK models are used, the clustering algorithm must search for linear subspaces. Each
cluster can then be represented by a rule of the fuzzy model. Cluster prototypes can be
defined as linear subspaces (lines, planes, hyperplanes), while the similarity measure can be
defined as the distance to such a prototype. Algorithms that use this approach include fuzzy
c-varieties (Bezdek, 1981), fuzzy c-elliptotypes (Bezdeket al., 1981) and fuzzy regression
models (Hathaway and Bezdek, 1993).

Gustafson-Kessel clustering

Gustafson-Kessel clustering (GK-clustering) has found to be an effective tool for building
TSK models (Babuˇska and Verbruggen, 1994; De Bruin and Roffel, 1996; Zhaoet al., 1994).
GK-clustering uses the covariance matrix of a cluster during the calculation of the distance
measure. The advantage of GK-clustering is that the clusters can have different shapes (while
they all have the same volume). This gives the GK-algorithm more flexibility in describing
complex systems. In addition, it is insensitive to scaling of the data or initialization (Babuˇska,
1996).

The clustering algorithm can be formulated as follows. LetX = {xj |j = 1, . . . , N} be a
set of feature vectors in<n, whereN is the number of measurements andn is the dimension
of the input-output space. LetP = (P1, P2, . . . , PK) be aK-tuple of cluster prototypes,
characterized by a cluster centerν and a covariance matrixF . A partition ofX into K fuzzy
clusters will be performed by minimizing the objective function

J(P, U ; X) =
K∑

i=1

N∑
j=1

(uij)md2(xj , Pi) (4.47)

whereU = [µij ]K×N , µij ∈ [0, 1] is the fuzzy partition matrix, which denotes to what extend
a feature vector ”belongs” to each cluster. This matrix satisfies the following conditions:

0 <

N∑
j=1

µij < N, ∀i (4.48)

K∑
i=1

µij = 1, ∀j (4.49)
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The minimization of the objective function is performed iteratively. Repeat forl = 1, 2, . . . ,
given the initial fuzzy partition matrixU (0) (which is initialized randomly), the number of
clustersK and the termination toleranceε:

• Compute the cluster centers:

ν
(l)
i =

∑N
j=1 µm

ij xj∑N
j=1 µm

ij

, 1 ≤ i ≤ K (4.50)

• Compute the new covariance matrices:

F
(l)
i =

∑N
j=1 µm

ij (xj − νi)(xj − νi)T∑N
j=1 µm

ij

, 1 ≤ i ≤ K (4.51)

• Compute the distances of the features to the cluster centersd2(xj , Pi):

d2(xj , Pi) = (xj − νi)T |Fi|1/nF−1
i (xj − νi), 1 ≤ i ≤ K, 1 ≤ j ≤ N (4.52)

• Compute the membership new grades:

µ
(l)
ij =

d2(xj , Pi)−1/m−1∑K
k=1 d2(xj , Pl)−1/m−1

, 1 ≤ i ≤ K, 1 ≤ j ≤ N (4.53)

in whichm is the ”fuzzy exponent”, which influences the resulting partition. Asm ap-
proaches 1 from above, the partition becomes hard. Asm approaches∞, the partition
becomes maximally ”fuzzy”. For GK-clustering,m is usually set to 2.

If d2(xj , Pi) = 0 for somei, then setµij = 1 and setµij = 0, ∀i 6= k.

until ‖U (l) − U (l−1)‖ < ε.

Structure optimization

The number of clustersK needs to be determined a priori. However, it is usually not
possible to determine the optimal number of clusters beforehand. The number of clusters
can be limited by merging ”compatible” clusters that show a certain degree of conformity.
A suitable technique that can accomplish this is the modified compatible cluster merging
(MCCM) algorithm (Kaymak and Babuska, 1995). This approach merges clusters based on
cluster distances and covariance matrix eigenvectors.

Let the centers of two clusters beνi andνj . Let the eigenvectors of the two corresponding co-
variance matrices be{φi,1, . . . , φi,n} and{φj,1, . . . , φj,n} and arranged in descending order.
The two criteria used for cluster merging are defined as:

c1
ij = |φi,n · φj,n| ≥ k1, k1 close to1 (4.54)

71



Hybrid model design

c2
ij = ‖νi − νj‖ ≤ k2, k2 close to0 (4.55)

The first criterion states that if the clusters, viewed upon as hyperplanes, are almost parallel,
then they should be merged. The second criterion states that if the two clusters are sufficiently
close, then they should be merged. Evaluating these criteria for all clusters yields two matri-
ces,C1[c1

ij ] andC2[c2
ij ], whose elements indicate the degree of similarity between clustersi

andj.

Based on these matrices, a decision must be made whether to merge two clusters. To make
this decision,C1 andC2 are transformed tõC1 andC̃2 using two exponential membership
functions. These membership functions indicate the degree of compatibility between two
clusters and are defined as follows:

c̃1
ij = exp

−7(c1
ij − 1)2

(1 − a)2
(4.56)

c̃2
ij = exp

−7(c2
ij − 1)2

(1 − b)2
(4.57)

in which

a =
1

n(n − 1)

n∑
i=1

n∑
j=1,j 6=i

c1
ij (4.58)

b =
1

n(n − 1)

n∑
i=1

n∑
j=1,j 6=i

c2
ij (4.59)

This makes the decision algorithm problem dependent. The criteria for closeness and par-
allellity may partially compensate for each other. Two clusters that are very close but that
are slightly non-parallel may need to be merged. This is also true for parallel clusters that lie
somewhat apart. To account for this,C̃1 andC̃2 are combined to a matrixC0 in the following
way:

c0
ij =

√
c̃1
ij c̃

2
ij (4.60)

To decide which clusters are to be merged, the matrixC0 is thresholded. One or several
groups of clusters can be merged. The merging is done transitively, which means that if the
values ofC0 indicate that clusteri andj should be merged and that clusterj andk should be
merged, all three clustersi, j andk are merged together. This is accomplished by relational
clustering (Dunn, 1974; Yang, 1993):

C0 := C, i := 0
repeat

i = i + 1
Ci = C0 ◦ Ci−1

until Ci = Ci−1

C := Ci

(4.61)

in which C0 ◦ Ci−1 = [c′ij ] with c′ij = ∨K
k=1(cik ∧ ckj). In addition,i = 1, . . . , K and

j = 1, . . . , K.
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The matrixC is now thresholded with a valueγ. If c0
ij > γ then clusteri andj should be

merged. Sincecij always lies between 1 and 0, a thresholdγ of 1 means that clusters are
never merged, while a threshold of 0 means that clusters are always merged. A value ofγ
between 0.55 and 0.75 is recommended (Kaymak and Babuska, 1995).

Undesired results may be obtained by cluster merging if incompatible clusters are located
between clusters that are compatible for merging. A heuristic step can solve this problem
(Babuška, 1996). This step prevents merging of clusters if there is an incompatible cluster
close to the mutual centers of the compatible clusters in the setM :

min max
νi∈M,νk 6∈M

dik > max
νi,νj∈M

dij (4.62)

in whichdij is the distance between cluster centersνi andνj projected on the input space:

dij = ‖proj(νi) − proj(νj)‖ (4.63)

If this criterion is not met, the set of clustersM is not merged.

A fuzzy partition matrixU ′ can be calculated based on the partition matrix that was avail-
able before merging, by adding up the rows ofU that correspond to the clusters that are
merged. After merging, the data is reclustered with the new number of clusters. The new
fuzzy partition matrix is used for initialization of the GK-clustering algorithm.

The clustering and cluster merging algorithm are performed consecutively until no more clus-
ters can be merged, i.e. whenU = U ′.

Model derivation

The result of the clustering algorithm is a description of the fuzzy system. The number
of rules is given by the number of clusters. The premise part is given in terms of the fuzzy
partition matrixU , which represents the clusters by multi dimensional, point-wise defined
membership functions in the input space. In essence, these membership functions represent
the Degree Of Fire (DOF) of the rules. The cluster centersν and their covariance matricesF
represent the consequent part. A model description that is independent of the identification
data must be derived in order to be able to use the model.

Premise part parameters

The antecedent membership functions can be derived in several ways. The degree of mem-
bership of a feature for a cluster can be directly calculated in the product space of the input
variables by using the distance measure from the clustering algorithm. An alternative is us-
ing a multi-input version of a parametric membership function that is fitted to the point-wise
definition, given by the fuzzy partition matrix. The shape of the membership function given
by the fuzzy partition matrix is similar to sigmoidal membership functions, while the shape
of the clusters is ellipsoidal. The multi-input membership function can then be defined as a
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Figure 4.9: Projection of fuzzy partition matrix and fit of parametric membership function

sigmoidal membership function with an ellipsoidal basis. For a system with two inputsx1

andx2, the multi input membership function can be given by:

µ =
1

1 + exp−a(r − b)
with r =

√
(x1 − x∗

1)2

c2
+

(x2 − x∗
2)2

d2
(4.64)

with a, b, c, d function parameters andx∗
1, x

∗
2 the cluster center.

A disadvantage of multi dimensional membership functions is that their description is less
transparent than the descriptions by single input membership functions. A more straight-
forward way is to project the multi dimensional point-wise membership functions onto the
input variables. A parametric single input membership function can then be fitted through
this projection. This is illustrated in figure 4.9.

The projection can be done directly onto the input variables, which results in an orthogonal
projection. Projection is carried out for all of the input variables. After fitting, the clusters
can be reconstructed by applying the AND intersection operator in the product space of the
input variables, so that the Degree Of Fire is calculated.

The reconstruction is not exact. If clusters are located in a non-orthogonal way with respect
to the input variables, the reconstruction may result indecomposition errors, illustrated in
figure 4.10. The error can be reduced by ”rotating” the input space to obtain an orthogonal
orientation, which involves transformation of the input variables. This can be done by using
eigenvector information form the cluster covariance matrices (Babuˇska, 1996) or by using
cluster boundary information (De Bruin and Roffel, 1996). However, this error can also be
reduced by least-squares calculation of the consequent parameters, which will be explained
later on. Some information may be lost by projecting non-orthogonally oriented clusters,
but it provides a better possibility to interpret the model because the input variables are not
transformed.

Consequent part parameters

The calculation of the consequent parameters involves determining the hyperplanes that de-
scribe the identification data for each cluster. The calculation is divided in two categories. In
the first category, the parameters for each hyperplane are calculated directly from the cluster
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center and eigenvector information from the covariance matrix. The normal of the desired
hyperplane is the eigenvector that corresponds to the smallest eigenvalue of the covariance
matrix. The parameters can be calculated from this eigenvector (Babuˇska, 1996) or from the
remaining eigenvectors, which span the hyperplane (De Bruin and Roffel, 1996).

A disadvantage of direct calculation of the consequent parameters is that model errors can
occur due to the decomposition error. This model error can be partially compensated for
by estimating the consequent parameters using a least squares approach. The estimation
problem can be approached as several independent weighted least squares problems (one
for each cluster) or as a global least squares problem following from the weighted mean
defuzzification equation (Babuˇska, 1996). The global least squares approach provides an
optimal fuzzy model in terms of a minimal model error. However, due to the global approach,
the estimates of the local models are biased. In this work, the weighted least squared approach
is preferred because it provides local interpretation and analysis of the fuzzy model.

The weighted least squares approach assumes that each cluster represents a local linear model
of the system. The membership valuesµik of the fuzzy partition serve directly as the weights
expressing the relevance of the data feature to the local modeli. Let X denote a matrix con-
taining theN input features in each row, lety denote a vector containing the corresponding
output values and letWi denote a diagonal matrix having the membership valuesµik as its
kth diagonal element:

X =




xT
1

xT
2
...

xT
N


 , y =




y1

y2

...
yN


 , Wi =




µi1 0 · · · 0
0 µi2 · · · 0
...

...
. . .

...
0 0 · · · µiN


 (4.65)

The consequent parameters of rule i,ai and bi, are concatenated into a single parameter
vectorθi:

θi =
[
aT

i ; bi

]T
(4.66)
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Appending a unitary column toX gives the extended input variable matrixXe:

Xe = [X ;1] (4.67)

If the columns ofXe are linearly independent andµik > 0 for 1 ≤ k ≤ N , then

θi =
[
XT

e WiXe

]−1
XT

e Wiy (4.68)

is the least squares solution ofy = Xeθ + ε where thekth data feature is weighted byµik. A
more efficient computer implementation is obtained if each row ofXe andy is first multiplied
with

√
µik:

X̃i =




√
µi1x

T
1√

µi2x
T
2

...√
µiNxT

N


 , ỹi =




√
µi1y1√
µi2y2

...√
µiNyN


 (4.69)

The parameters are then given by:

θi =
[
X̃T

i X̃i

]−1

X̃T
i ỹi (4.70)

An α-cut can be incorporated in the calculation in order to prevent biasing by data features
with low membership values for a certain cluster. The low membership of these features is
already taken into account by the weighting. However, if a cluster is small than the number of
features with low membership value may be high, which can bias the calculation. Theα-cut
αc can be performed as follows:

X̃α
i = {xik|xik ∈ X̃i, µik > αc, αc ∈ [0, 1]} (4.71)

ỹα
i = {yik|yik ∈ ỹi, µik > αc, αc ∈ [0, 1]} (4.72)

Example 4.5 As an example, fuzzy clustering will be used to build a model of the net growth rate
α as a function of the substrateS and biomassX for the hybrid model of example 4.1. Assume
that an input-output data set has been created using experiments ID1 to ID16 (example 4.2) and
that the PI-estimator designed in example 4.4 is available. This means that input-output data is
available in the form of measurements ofS andX and estimates ofα.

The data set can be presented directly to the clustering algorithm. However, due to the nature of
the batch runs, the data is not evenly distributed in the input space. During the latter hours of a
batch, a sort of ”pseudo steady state” is obtained in whichX andS do not vary as much as during
the first hours. This causes data features to lie closer together in the area whereX is high andS
is low than data features in the area whereX is low andS is high. Since the clustering approach
uses least squares calculation, results may be biased because of this. This problem is solved by
reduction of the data set: all features, for which the distance in the input space to an other feature
is smaller than a pre-determined threshold, are removed. This threshold is set manually by finding
a balance between the number of data features in the reduced data set and the average distance
between these features. The threshold was set to 2 and the distribution of the resulting data set is
shown in figure 4.11.

76



0 10 20 30
0

20

40

60

S (g/l)

X
 (

g/
l)

0 10 20 30
0

20

40

60

S (g/l)

X
 (

g/
l)

(a) (b)

Figure 4.11: Input space distribution before (a) and after (b) reduction

The reduced data set was clustered and the thresholdγ was set to 0.4. The initial number of clusters
was 10. This number was reduced to three by the merging algorithm. The next step is to project
the fuzzy partition matrix onto theS andX axis, so that parametric membership functions can be
determined. This is shown in figure 4.12.

The fuzzy model can now be completed by calculating the consequent part parameters using the
least squares approach. For theα-cut, αc was set to 0.5. This yields the following local linear
models:

y1 = 0.0114S + 0.0048X − 0.0859 (4.73)

y2 = 0.0061S − 0.0001X − 0.0054 (4.74)

y3 = 0.0092S − 0.0028X − 0.0327 (4.75)
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Figure 4.12: Fuzzy partition matrix projections and fitted parametric membership functions
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Figure 4.13: Fuzzy relation for α and rule locations. Dots indicates identification data

The fuzzy model can now be simply formulated as:

IF S = mf1 AND X = mf1 THEN α = y1

IF S = mf2 AND X = mf2 THEN α = y2

IF S = mf3 AND X = mf3 THEN α = y3

(4.76)

Figure 4.13 shows the function hyperplane and the locations of the rules. The Root Mean Squared
Error (RMSE) with respect to the identification data is 0.0248. This error is mainly the result of a
bad fit in the region whereX is low; the RMSE with respect to data features in the region where
X is high is 0.0091. A more complex fuzzy relation can provide a better description. However,
the observed behavior of the net growth rate is not so complex that a more complex fuzzy relation
is justified from a transparency point of view. In addition, the PI-estimator lags behind the actual
value of the growth rate due to the feedback nature. Estimates ofα are thus lower than the actual
value. Therefore, the final evaluation of the fuzzy model should be done after integration in the
hybrid model structure.

Although fuzzy logic is a black box technique,a posteriorianalysis of the model shows that the
rules represent three phases during a batch: an initial phase, in which the substrate concentration is
still high and the biomass culture is growing rapidly (rule 1), a final phase which occurs at the end
of a batch, in which not much substrate is present and the net growth rate is not very high (rule 2)
and an intermediary phase (rule 3).2

4.4.2 Genetic algorithms

Genetic Algorithms (GAs) are well known for their optimization capabilities. Following
basic Darwinistic propagation, the method is based on a ”survival of the fittest” principle, in
which only the solution candidates with the best desirable properties (e.g. smallest error) from
a ”population” will survive. The candidates that will survive are selected by evaluating their
fitness value through the fitness function (similar to the objective function in more traditional
optimization algorithms).

This section describes the basic concept of genetic algorithms and the techniques used in this
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work, for a more detailed discussion see (Goldberg, 1989).

When genetic algorithms are used to identify a fuzzy system, the identification is viewed upon
as an optimization problem. Many applications of developing fuzzy systems with GAs have
been reported (Back and Kursawe, 1995). Using GAs to set up a fuzzy system involves coding
the problem into ”chromosomes” or ”strings” and setting up a fitness function (goal function).
Since TSK models are used, the consequent part of the fuzzy model can be calculated using
a least squares approach, if the premise part is available (see section 4.4.1). Therefore a
hybrid identification approach is used: only the premise part of the fuzzy model is coded
into chromosomes and optimized by the GA. In each iteration, the consequent parts of all
candidates are calculated using the least squares approach, after which the fitness function
is calculated. Since the local models in the consequent part of each rule are least squares
optimal, no rule structure optimization is necessary. Optimization of the number of rules
involves a more elaborate approach and significantly increases the search space.

In order to be able to code the problem, an initial model structure needs to be formulated.
Based on the number of rules and membership functions in this structure, a binary string can
be designed.

Premise part coding

Usually, the problem is coded into a binary string or ”chromosome” which is presented
to the GA for optimization. Real-valued coding is less common, but also can be used. The
coding of the premise part of the fuzzy system involves representing the parameters of the
membership functions in a binary format. The representation chosen here is straightforward
and taken from KrishnaKumaret al. (1995).

The first step is to map a single parameter to a binary string. To accomplish this, allowed
maximum and minimum values of the parameter are chosen. In addition, the string lengthκ
should be chosen. The parameter is discretized by mapping to the string from the minimum
value to the maximum value with a linear mapping in between. For example, for a string
length of 5, 00000 corresponds to the minimum value and 11111 corresponds to the maximum
value. The string length is determined by selecting the resolutionr, the number of discrete
values in the mapping.

The discrete mappings of the different parameters of a membership function are concatenated
to form a string that represents the membership function. Double sigmoid membership func-
tions, which contain 4 parameters, will be used. Different membership function strings are
then concatenated to form the string with lengthκ that represents the premise part, as shown
in figure 4.14.
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Figure 4.14: GA coding of the premise part

Optimization procedure

The identification involves three main steps, which are performed iteratively:

• Optimization of the consequent part using weighted least squares

• Evaluation of the ”fitness” of the population of possible solution candidates for the
premise part

• ”Evolution” of the population, based on the population ”fitness”

The procedure is initialized by creating a ”population” of possible solution candidates, in
this case a set of different premise parts for the system, coded as binary strings. This set is
initialized randomly in the search space, spanned by the selected maximum and minimum
values of the coded parameters. The sizeM of the population depends on the complexity of
the problem and the number of parameters that need to be optimized. One way to assure that
a suitable solution can be found is to create a relatively large population, but this can result
in a large computational effort. Some researchers have found that a good rule of thumb is to
select a population size of 25% of the string length or larger.

The first step in the procedure is to optimize the consequent part for each member in the
population. The weighted least squares calculation is explained in section 4.4.1. The next
step is to calculate the ”fitness” of each member in the population. Since a set of data needs
to be described by the model, the goal is to minimize the model error with respect to the data.
The ”fitness” is expressed in terms of this model error: the smaller the error, the fitter the
member of the population. A squared error, common in optimization procedures, is used:

J =
1
2
‖y − ŷ‖2

2 =
1
2

N∑
i=1

(yi − ŷi)2 (4.77)

in which ŷ denotes the model output vector andy denotes the desired output vector.

”Evolution” of the population takes place by reproduction. Based on their fitness value, mem-
bers of the population are selected for reproduction. Members that are selected to reproduce
are copied and replace members with a low fitness value. The number of membersM of
a population remains unchanged. This means that good strings get more copies in the next
”generation”, which emphasizes the basic survival of the fittest concept.
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Different strategies exist for the selection of population members. The best known procedure
is the roulette wheel. Each member of the population has a roulette wheel slot sized in
proportion to its fitness. The roulette wheel is spun and the string at which slot the roulette
wheel stops is selected for reproduction. This means that population members with high
fitness are more likely to be selected than strings with low fitness. Spinning is repeated until
the next generation is full.

However, performance difficulties using the roulette wheel have been reported and improve-
ments of this basic selection procedure have been presented (Goldberg, 1989). Tournament
selection is an example of a procedure that does not have these restrictions. With tourna-
ment selection, a pair of individuals is selected at random from the population. The fittest
of the two becomes a member of the next generation. This process is repeated until the next
generation is full.

Two processes, crossover and mutation, take place during reproduction. The result of these
processes is that population members with new properties can be created. A simple crossover
process is performed in three steps. First, the newly selected strings are paired together
at random. Second, an integer positionn along every pair of strings is selected uniformly at
random. Finally, based on a probability of crossoverpc, the pairs of strings undergo crossover
at the integer positionn along the string. This results in new pairs of strings that are created
by swapping all the characters between and including characters 1 andn. Crossover can be
at a single point, two points or atk points. The probability of crossoverpc is typically around
0.75.

Mutation is simply an occasional random alteration of a string character, which in this case in-
volves changing a 1 to a zero and vice versa. Mutation is based on the probability of mutation
pm, which typically is around 0.001. The mutation operator helps in avoiding the possibility
of mistaking a local minimum for a global minimum because it introduces a random search
element in the vicinity of the population.

The three iteration steps - consequent part optimization, fitness evaluation and evolution - are
repeated until a pre-determined number of generationsG have been evaluated or when there
is no improvement.

Example 4.6 To illustrate the GA approach, a fuzzy model will be identified for the net growth
rateα as a function of the substrate concentrationS and the biomass concentrationX, as a part
of the hybrid model for the bioreactor described in example 4.1. This will be done using the same
reduced data set as was used in example 4.5.

The GA does not incorporate the optimization of the number of rules nor does it derive the model
structure from the data. Therefore, several different identification runs were performed and ana-
lyzed in order to determine an acceptable number of rules. In each case, the rules were independent.

Double sigmoid membership functions were used in each experiment. In order to guarantee a
certain level of transparency, the parameter description of this membership function was slightly
changed (see equation A.4):

µ =
1

1 + exp−a(x− b)

1

1 + exp−c(x − d − δ)
(4.78)
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# rules r κ G M pc pm RMSE

2 64 96 250 101 0.77 0.0077 0.0197
3 64 144 250 101 0.77 0.0077 0.0132
4 64 192 250 101 0.77 0.0077 0.0129

Table 4.3: GA setting and results

with

δ = (
1

c
− 1

a
) ln (1/0.99 − 1) + b (4.79)

If d ≥ 0, then this membership function always reaches approximately 1. Parametersb andd
determine the position of the membership function, whilea andc determine the slope of the S-
curves. For the coding of the premise part, maximum and minimum values forb and d were
based on the input domain. Maximum and minimum values fora andc were chosen arbitrarily to
guarantee a certain level of ”fuzziness”; high values lead to crisp sets, while low values lead to sets
that are too fuzzy.

GA settings and results for three different runs are shown in table 4.3. All models describe the
identification data well and model errors are in the same order of magnitude. Not surprisingly, the
model with 4 rules has the smallest error.

The GA searches for a solution in a large search space. It determines starting points for the search
itself, which makes it not very sensitive to initial parameter values. Not the initial values of the
parameters affect the result, but the specified search space does. However, the GA does not take
the identification data as a starting-point for model derivation, such as fuzzy clustering does. A
priori information about the model structure has to be supplied. In addition, rules can be located in
areas of the domain where no data is present. This means that, depending on the model structure,
undesired extrapolation behavior can occur. In this example, this is the case for the fuzzy models
with 3 and 4 rules (see figures 4.16 and 4.17).

Because of the undesired rule locations and extrapolation behavior of the more complex models,
the 2-rule model is selected, despite its larger error. The model is shown in figure 4.15.

Figure 4.18 shows the parametric membership functions of the 2-rule model. For theα-cut in the
consequent part parameter calculation,α was set to 0.5, which yields the following local linear
models:

y1 = 0.0060S + 0.0355X − 0.2264 (4.80)

y2 = 0.0079S − 0.0003X − 0.0070 (4.81)

The fuzzy model can now be formulated as:

IF S = mf1 AND X = mf1 THEN α = y1

IF S = mf2 AND X = mf2 THEN α = y2
(4.82)

2
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Figure 4.15: Fuzzy relation for α and rule locations for 2-rule model. Dots indicates identification data
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Figure 4.16: Fuzzy relation for α and rule locations for 3-rule model. Dots indicates identification data
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Figure 4.17: Fuzzy relation for α and rule locations for 4-rule model. Dots indicates identification data
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Figure 4.18: Parametric membership functions for the 2-rule fuzzy model

4.4.3 Neurofuzzy systems

Neurofuzzy systems can be viewed upon as a combination of fuzzy systems and artificial
neural networks (ANNs). The fuzzy inference system is implemented in the framework of
these adaptive networks. This provides the possibility to use backpropagation learning rules,
commonly used to train these nets. Several approaches have been developed in the past.
Some of these have been applied within the context of hybrid modeling, such as NEFPROX
(Nauck and Kruse, 1997) and ASMOD (Kavli, 1993), covering both linguistic and TSK type
fuzzy models. Here, Jang’s well-known Adaptive Network based Fuzzy Inference System
(ANFIS) approach is discussed in more detail Jang (1993).

Jang interprets a TSK fuzzy system as an adaptive network, on which adaptive learning rules
can be applied to optimize the system parameters. The interpretation consists of 5 layers.
Consider a simple 2 input, 1 output TSK model consisting of two rules:

IF x1 = mf11 AND x2 = mf21 THEN y = y1

IF x1 = mf12 AND x2 = mf22 THEN y = y2
(4.83)

in which
y1 = p1x1 + q1x2 + r1 (4.84)

y2 = p2x1 + q2x2 + r2 (4.85)

The ANFIS interpretation of this fuzzy model is shown in figure 4.19 and can be described
as follows:

• Layer 1
The nodes in layer 1 contain the premise part membership functions of the model. For
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Figure 4.19: ANFIS architecture for a 2 input, 1 output TSK model

example, the node function for membership functionj of input i is given by:

oij = mfij(xi) (4.86)

• Layer 2
The nodes in layer 2 determine the Degree of Fireτ (DOF) of the rules of the model.
The DOF of rulei is calculated by the AND intersection operator:

τi = o1i ∧ o2i (4.87)

In this case, the product is used as the AND operator.

• Layer 3
Layer 3 calculates the weighted DOF of each rule. The weighted DOF for rulei is
calculated by:

τ̄i =
τi∑2
j τj

(4.88)

• Layer 4
Using the local linear models, the weighted output of each rule is calculated. The
output of rulei is calculated as:

τ̄iyi = τ̄i(pix1 + qix2 + ri) (4.89)

• Layer 5
The output of the fuzzy model is calculated by layer 5:

y =
2∑
i

τiyi (4.90)

Parameter optimization is carried out using a so-called forward pass and a backward pass.
During every iteration, the consequence part parameters of the fuzzy model are determined
using the weighted least squares approach (see section 4.4.1). An alternate approach to the
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weighted least squares calculation is an iterative calculation of the solution to the least squares
problem (Jang, 1993). In this approach, no matrix inversion is used which results in a com-
putationally more efficient calculation. In this work, the weighted least squares approach is
used. Calculation of the consequent parameters is called the forward pass.

In the backward pass, the error rates propagate backwards and the premise part parameters in
layer 1 are updated by a standard gradient descent learning rule. The parameters in layer 1
are the only parameters that are updated by the learning rule. This means that the error in the
output needs to be propagated to this layer.

Denote the output of a node in theith position of thekth layer byok
i and letOk

i be its function.
Let X = {xj |j = 1, . . . , N} be a set of feature vectors in<n, whereN is the number of
measurements andn is the dimension of the input-output space. In this example,n = 3. The
error measure of the ANFIS network is defined as the sum of the squared errors:

Ei = (xi,3 − yi)2 (4.91)

E =
N∑

i=1

Ei (4.92)

In order to develop a learning procedure that implements gradient descent inE over the
parameter space, the error rate∂Ei/∂o for theith feature vector and for each node outputo
needs to be calculated. The error rate for the outputnode can be calculated from equation 4.91:

∂Ei

∂o5
1,i

= −2(xi,3 − o5
1i) (4.93)

For a nodej in layerk, the error rate can be derived by the chain rule:

∂Ei

∂ok
j,i

=
#(k+1)∑

m=1

∂Ei

∂ok+1
m,i

∂ok+1
m,i

∂ok
j,i

(4.94)

in which #(k) denotes the number of nodes in layerk. This means that the error rate of an
internal node can be expressed as a linear combination of the error rates of the nodes in the
next layer.

Now if a is a membership function parameter in a node in layer 1, the error rate can be
described by:

∂Ei

∂a
=

∑
o∗∈S

∂Ei

∂o∗
∂o∗
∂a

(4.95)

where S is the set of nodes whose outputs depend ona. Then the derivative of the overall
error measureE with respect toa is:

∂E

∂a
=

N∑
i=1

∂Ei

∂a
(4.96)
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The update equation for the parametera is:

∆a = −η
∂E

∂a
(4.97)

in whichη is a learning rate which is expressed by:

η =
K√∑
a

(
∂E
∂a

)2
(4.98)

whereK is the step size, the length of each gradient transition in the parameter space. The
value ofK can be changed to vary the speed of convergence. IfK is small, the gradient
method will closely approximate the gradient path, but convergence will be slow. IfK is
large, convergence will initially be fast, but the algorithm will oscillate about the optimum.
Based on this,K can be updated according to the following heuristic rules (Jang, 1993):

• If the error measure undergoes four consecutive reductions, setK = rKiK, in which
rKi is the increase ratio.

• If the error measure undergoes two consecutive combinations of one increase and one
reduction, setK = rKdK, , in whichrKd is the decrease ratio.

Jang selects to increase or decrease the step size by 10%. This number is chosen arbitrarily.
In addition, the initial value ofK is usually not critical as long as it is not too large.

The forward and backward pass are performed iteratively until some criterion is satisfied,
for example, until the change in parameters is very small or until a predefined number of
iterationse has been completed.

The procedure starts with an initial fuzzy model. This model is trained by optimizing its
membership function parameters, while the rule structure is left intact. This means that the
rule structure needs to be defined beforehand. Neurofuzzy approaches that include rule learn-
ing are available (for example Kavli (1993)), but are not presented here.

Example 4.7 The ANFIS approach is illustrated by building a fuzzy model for the net growth rate
α. The same data set is used as in examples 4.6 and 4.5.

As with the genetic algorithms example, no rules optimization is included. In the ANFIS case, this
involves the optimization of the network structure. Therefore, several identification experiments
were executed in order to determine a suitable number of rules. All rules were independent and
double sigmoid membership functions were used in each experiment.

The structure of the initial models influences the end result. Therefore, the initial models were built
properly, i.e., the membership functions were designed in such a way that a fuzzy partition in the
input space was formed.

Settings and results for three different runs are shown in table 4.4. As with the GA, all models
perform well and the most complex model has the smallest error.
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# rules e rKi rKd Kinit RMSE

2 1000 1.1 0.9 0.05 0.0208
3 1000 1.1 0.9 0.05 0.0197
4 1000 1.1 0.9 0.05 0.0179

Table 4.4: ANFIS setting and results

For all three runs, it is observed that the premise part is not altered much after identification. The
membership functions are only slightly changed. This was observed for all three experiments. As
can be expected from a gradient descent approach, ANFIS is very sensitive to initialization.

No mechanism is provided to maintain a fuzzy partition in the input space. Although this does not
have to impair model results, it may result in models that are difficult to interpret. For the 3-rule
model, rules 1 and 2 completely overlap after identification (see figure 4.21). This indicates that
the chosen model structure may be too complex.

Similar to the presented GA approach, ANFIS does not take the data as a starting point to determine
the model structure but uses an a priori defined model. This can result in undesired extrapolation
behavior if the model structure is too complex, especially in areas of the input-output domain where
there is little data. In this case, the 3-rule and 4-rule model show this behavior. The anomalous
extrapolation is caused by the rules in the area where there is little data.

The rules in the 2-rule model have sufficient data in their activation domain to calculate the conse-
quent parameters successfully. The output surface is similar to the 2-rule model identified with the
GA. The premise part membership functions are shown in figure 4.23 and the local linear models
are:

y1 = 0.0111S + 0.0132X − 0.1383 (4.99)

y2 = 0.0054S + 0.0030X − 0.1964 (4.100)

The fuzzy model can be formulated as

IF S = mf1 AND X = mf1 THEN α = y1

IF S = mf2 AND X = mf2 THEN α = y2
(4.101)

2

4.4.4 Remarks

Fuzzy clustering requires lessa priori structure information than the GA and ANFIS.
The latter two methods need a pre-determined rule base structure and membership functions
to initialize parameter identification, whereas the clustering approach determines the number
of rules automatically. The results are therefore less sensitive to initialization. ANFIS uses
an initial model as a starting point for further optimization. Such an initial model may be
difficult to set up if no prior information is available, unless an expert could give some qual-
itative information. Furthermore, experimental results have shown what can be anticipated:
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Figure 4.20: Fuzzy relation for α and rule locations for 2-rule model. Dots indicates identification data
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Figure 4.21: Fuzzy relation for α and rule locations for 3-rule model. Dots indicates identification data
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Figure 4.22: Fuzzy relation for α and rule locations for 4-rule model. Dots indicates identification data
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Figure 4.23: Parametric membership functions for the 2-rule fuzzy model

the identified model is closely related to the initial model with respect to premise part pa-
rameters. This makes ANFIS sensitive to choices made before identification. With the GA,
information about the structure of the model also has to be provided (in terms of the rule base
and corresponding membership functions) in advance. The GA searches for a solution in a
much larger search space than the backpropagation algorithm and determines starting points
for the search itself, which makes it not very sensitive to initial parameter values. Not the
initial values of the parameters affect the result, but the specified search space does.

The input-output data for the growth rate is not distributed over the complete input space
of the system. Normal operation of the reactor causesS andX to be limited to a certain
part of the input space. A fuzzy model with independent rules will be able to cope with this
data much better, because the rules of these models will be able to describe working areas
within the part where data is present, without influencing other rules. For example, if the best
partitioning of the input space is non-orthogonal, fuzzy models with dependent rules will be
limited in providing a simple rule base that handles this.

The advantage of fuzzy clustering is that it focuses on the data and derives a fuzzy model
with independent rules. To obtain the same result with the GA or with ANFIS, prior knowl-
edge has to be provided about the structure and initial location of the rules. This may be
cumbersome for high dimensional systems. If this prior knowledge is not provided, rules
may be present that have no meaning and that can complicate optimization. For example, this
was observed with the 4-rule model that was built with ANFIS. Although the overall result is
good for the part where data is present, rule 4 in the area with highS andX is not desirable
(figure 4.22 (b)).

As with all black box techniques, care has to be taken in extrapolating these fuzzy mod-
els. The 3- and 4-rule models that were built with ANFIS show an example of extrapolation
properties that seriously will impair hybrid model results. Post-processing of the identifica-

90



tion results can improve this by assuming linear behavior when extrapolating, which often
is the best assumption that can be made. Since TSK models are a collection of local linear
models, evaluating rules located at the edge of the input space and adjusting membership
functions when necessary will ensure this.

Based on these results, the Gustafson-Kessel clustering approach with structure optimization
will be used as the main identification tool for fuzzy systems throughout the rest of this work.

4.5 Submodel integration

Since the general structure of the hybrid model is a framework of accumulation balances
accompanied with algebraic fuzzy relations, integration of the physical and fuzzy parts is
straightforward. The fuzzy submodels are part of the set of equations that make up the hybrid
model.

However, with respect to the fuzzy submodels, two sources of error may result in unac-
ceptable hybrid model performance. First of all, estimates are made in order to obtain input-
output data. Estimation errors will manifest themselves through the fuzzy model in the hybrid
model. Secondly, the fuzzy models are fit to input-output data. Errors resulting from fuzzy
model identification can also cause hybrid model errors. Since the hybrid models are dynam-
ical and usually are simulated as a ”free run” (numerically and in an autoregressive manner),
small errors are integrated which eventually can result in large offset.

If hybrid model performance is unacceptable, it can be improved by manipulating the fuzzy
parts of the hybrid model. This means optimizing fuzzy model parameters with respect to the
hybrid model output.

This section will discuss the integration of the fuzzy submodels of a hybrid model by op-
timization. The main idea is to improve hybrid model performance without discarding the
properties of the fuzzy submodels.

4.5.1 Parameters

The number of parameters in the fuzzy submodels that has to be optimized is quite large.
One rule of the fuzzy model for the net growth rateα in the bioreactor case, for example,
contains about 10 parameters, depending on the type of membership function that is used.
Due to the ”curse of dimensionality” the number of parameters increases exponentially for
systems with higher dimensions.

During optimization, it is proposed to account for the meaning of the parameters of the fuzzy
model. With TSK models, the premise part parameters determine the operating range for
which the local linear models are valid. In order to maintain some of the information about
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the operating range that the fuzzy identification algorithm has determined, an optimization
algorithm has to be selected that can deal with this. This means constraints for thepremise
part parametersshould be introduced. These constraints can put limitations on the level of
fuzziness of the sets and their location in the input domain. The constraints can be determined
from the fuzzy model and heuristic knowledge. Usually the constraints can be formulated as
an allowed percentage of variation.

It is clear that theconsequent parametershave the largest impact on the model performance.
Since the impact on model transparency is relatively low, the optimization of these parameters
should be less constrained. In particular, if local interpretation of the model is important, the
optimization should be more constrained than if this is not the case. Since the optimization is
performed globally, and not with respect to the local linear model output, local interpretation
may be impaired.

To reduce the number of parameters, the optimization can also be performed onrule weights
or fuzzy model weights. The optimization of rule weights corresponds with the adjustment of
the parameters of a single local linear model by the same amount, while optimization of the
model weights corresponds with the adjustment of all consequent parameters. Optimization
of rule weights or model gain can be useful for large parameter systems, if similar error
behavior over the entire input domain is observed, or if model errors can be traced to a
specific rule in the fuzzy model. In addition, local interpretation is preserved better than with
unconstrained consequent parameter optimization.

4.5.2 Optimization

In principle, any optimization algorithm that the modeler finds appropriate, can be ap-
plied for hybrid model optimization. Care has to be taken, however, that the optimization
algorithm is able to deal with the number of parameters that will be optimized.

Since the goal is to improve the hybrid model performance by using the results from the
submodel identification step as a starting-point, direct search (simplex) or gradient-based
approaches are suitable to perform the task. Approaches such as genetic algorithms (for
example applied in Rouboset al. (1999)) discard the existing model parameters and are only
appropriate if the search space is limited, thus if heavy constraints are imposed that are based
on the parameters of the fuzzy submodel before optimization.

For large parameter optimization problems, the approach described in Branchet al. (1999)
was found to be suitable. This approach transforms large parameter problems into a two
dimensional quadratic approximation for a certain ”trust region” by using a preconditioned
conjugate gradient approach. This quadratic problem is subsequently solved. Box constraints
are incorporated by ”reflecting” the search path when it encounters a bound. The algorithm
is available commercially as part of the MATLAB Optimization Toolbox. Here, only a brief
overview is given.
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Let f(x) be the objective function to be minimized with respect to the vectorx with n
parameters. The basic idea is to approximatef(x) with a simpler functionq that describes
the original function reasonably well in the neighborhood ofx. This neighborhood is the so-
called ”trust region”N . A trial stepd is calculated by minimizingq overN . The optimization
problem can be reformulated as:

min
d

{q(d)|d ∈ N} (4.102)

The current point is updated tox + d if f(x + d) < f(x). If this is not the case, the current
point remains unchanged andN is shrunk, after which a new trial step is calculated. To be
able to solve the problem, an appropriate approximation functionq, a method for choosing
the trust regionN and a solution method for the trust region subproblem (equation 4.102)
need to be available.

The approximationq can be defined by the first two terms of the Taylor expansion off atx.
The trust regionN is usually spherical or ellipsoidal. The problem can now be stated as:

min
d

{1
2
dT Hd + dT g‖Dd‖2 ≤ ∆} (4.103)

with g the gradient andH the Hessian of the objective function,D a positive diagonal scaling
matrix and∆ a positive scalar.

Good algorithms are available for solving equation 4.103 (Byrdet al., 1988) but they are time
consuming for large numbers of parameters. Therefore, a different approach is applied. If
the trust region problem is restricted to a two-dimensional subspaceS, the solution of 4.103
requires little computational effort.

Subspace calculation

The two-dimensional subspaceS =< s1, s2 > is spanned by two vectors: the direction
of the gradients1 = D−2g (the scaled gradient vector) and either a direction of negative
curvature (the steepest descent direction):

sT
2 Hs2 < 0 (4.104)

or an approximate scaled newton step:

M̂s2 = −ĝ (4.105)

where
ĝ = D−1g = diag(|v|1/2)g (4.106)

M̂ = D−1HD−1 + diag(g)Ja (4.107)
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Ja is the Jacobian of|v| andv is a vector that implements box constraints. The solution to
equation 4.105 can only be found if̂M is positive definite. If this is not the case, the direction
of negative curvature 4.104 is selected fors2.

Box constraints

If constraints are imposed on the parameter vectorx, then the optimization problem can
be formulated as:

min
x

{f(x)|l < x < u} (4.108)

wherel is a vector of lower bounds andu is a vector of upper bounds. Some (or all) compo-
nents ofl may be equal to−∞, some components ofu may be equal to∞. The constraints
are implemented by the vectorv:

IF gi < 0 AND ui < ∞ THEN vi = xi − ui

IF gi ≥ 0 AND ui > −∞ THEN vi = xi − li
IF gi < 0 AND ui = ∞ THEN vi = −1
IF gi ≥ 0 AND ui = −∞ THEN vi = 1

(4.109)

If, during a step, a constraint is hit, the step is reflected off the constraint. This increases the
step size (Branchet al., 1999). For a (single) reflection step, given a stepd that intersects a
constraint, consider the first bound constraint crossed byd and assume it is thei-th bound
constraint. Then the reflection stepdR = d except in thei-th component, wheredR

i = −di.

Algorithm

The optimization algorithm can be summarized as follows:

1. Subspace calculation: Formulate the two-dimensional trust region subproblemS

2. Trust region method: Solve the two-dimensional subproblemS. Calculate the trial step
and use reflections if necessary

3. If f(x + d) < f(x) then setx = x + d and start again with step 1 or else go to step 4

4. Adjust∆ to shrink the size of the trust region and determine a new trial stepd in step
2

4.5.3 Objective function

All relevant hybrid model outputs should be incorporated in the objective function. For
dynamical models, the goal function should be able to deal with measurement trends instead
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of steady state errors. In addition, scaling of the different errors is appropriate. A straightfor-
ward and common least squares criterion that incorporates this can be formulated as follows:

J =
1
2

m∑
j=1

n∑
i=1

wi(yij − ŷij)2 (4.110)

in which yi is the vector with (normalized) measurements of outputi and ŷi is the vector
with (normalized) model output values of outputi. w is a weighting vector. The choice of
the weights depends on the problem.

In Psichogios and Ungar (1992), the parameters of a neural net (that is part of the hybrid
model) are optimized with respect to the hybrid model output. The objective function in this
work incorporates sensitivity functions (partial derivatives of the output to the parameters that
are optimized) in the objective function. This way, the error is propagated back to the output
of the neural net. However, if gradient descent based optimization approaches are used,
sensitivity information of the model output with respect to the parameters will be calculated
by the algorithm. This omits the need to incorporate sensitivity equations explicitly in the
objective function.

4.5.4 Remarks

The optimization of the hybrid model as presented in this section can be extended to
incorporate other model parameters. However, the larger the number of parameters that is
optimized, the more likely it is that the different parameters will compensate for each others
errors. For example, if several fuzzy models are optimized simultaneously, then they can
compensate for each others contribution to the hybrid model output, which results in a loss
of meaning of the fuzzy model output. This is even more the case if other model parameters
are included.

To gain insight in the influence of the different fuzzy models or model parameters on the
hybrid model output, sensitivity analysis can be worthwhile before performing the integration
step. This will provide information about the main sources of the error in the model output.
With respect to this, it is also recommended to investigate the contributions of the specific
rules in the fuzzy models. The analysis forms the basis for selecting the set of parameters
that is optimized and for determining objective function weights.

It is clear that the complexity of the problem is reduced if the integration is performed on
smaller, independent parts of the hybrid model. For example, if the fuzzy model for a re-
action rate is optimized, the mass balance which contains this reaction rate should only be
incorporated. Whether this is possible depends on the measurements that are available, the
model structure and the sensitivity analysis.

With the optimization of large sets of parameters, it is difficult to determine whether the global
optimum is found. By using gradient based algorithms, it is more likely that a local optimum
is found. However, it is usually possible to formulate criteria for acceptable performance of a
model. The goal of the optimization should therefore not be the determination of the optimal
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Figure 4.24: Fuzzy relation for qp and rule locations. Dots indicates identification data

set of parameters, but finding a solution that meets these criteria.

Example 4.8 Consider the hybrid model for the fed-batch bioreactor (example 4.1) and assume
that the fuzzy model for the net growth rateα that was identified with fuzzy clustering in exam-
ple 4.5 is available. Furthermore, assume that a fuzzy model for the production rateqp as a func-
tion of the substrate concentrationS and the biomass concentrationX is available and that this
model was identified with fuzzy clustering, based on estimates by a PI-estimator. The estimates
of qp were made by using measurements ofP and the mass balance for the product concentration
(equation 4.3). The settings for the PI-estimator are shown in table 4.2, while the settings for the
clustering were 5 for the initial number of clusters and 0.55 for the cluster merging thresholdγ.
The fuzzy model is shown in figure 4.24.

In this example, the large scale algorithm will be illustrated. The initial performance of the hybrid
model for run VAL1, before optimization, is shown in figure 4.25. It can be seen that for this
run, the concentration ofP starts to decrease after about 160 hours, which is not possible. This is
caused by anomalous behavior ofqp. The production rate decreases after 160 hours, which results
in a decrease in production ofP . Because the amount ofP in the reactor is diluted, the net result
is a decrease in the concentration ofP . The increase inS is caused by a decrease in the substrate
consumption rate, which is a result of the decrease inqp.

The goal is to improve hybrid model performance with respect to the errors in the biomassX, the
substrateS and the productP . This will be done by using the measurements from the identification
batch runs ID1 to ID16 (see example 4.2) as a reference. The objective function is formulated
according to equation 4.110:

J =
1

2

∑
(e2

S + e2
X + e2

P ) (4.111)

in whicheS , eX andeP are normalized error signals, defined as:

eS,k = |Sij − Ŝij

S̄j
| with k = i · j (4.112)

eX,k = |Xij − X̂ij

X̄j
| with k = i · j (4.113)

eP,k = |Pij − P̂ij

P̄j
| with k = i · j (4.114)
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Figure 4.25: Run VAL1 results before and after optimization. Dots indicate measurements, dashed line
hybrid model before optimization, dotted line hybrid model after optimization for X (a), S (b) and P
(c)

with index i indicating the time step and indexj indicating the batch run.Ŝ indicates model
estimates forS andS̄ indicates the average value ofS for a batch run, with similar definitions for
X andP .

Although it is possible to optimize the fuzzy models forα andqp sequentially (first,α with respect
to X and thenqp with respect toP ), it is interesting to see how the large scale algorithm deals with
optimization of a large set of parameters in a hybrid model. Therefore, all the parameters of the
two fuzzy models will be optimized simultaneously. The result is that a set of 66 parameters will
be optimized; 48 premise part parameters and 18 consequent part parameters. The premise part
parameters are constrained; the bounds are set at the initial values +/- 10 %. No constraints were
placed on the consequent part parameters.

The results of the optimization are shown in figure 4.25 (for clarity, only some of the measurements
are shown). The anomalous behavior has been removed and model offset has been reduced to
acceptable levels. The results are shown in table 4.5. The errors are the normalized errors for run
VAL1 at the end of the batch.

Figure 4.26 shows the local linear models of the fuzzy relations before and after the optimiza-
tion. In both models, the rule locations have not been altered much, due to the constraints. The
consequent parameters of the fuzzy model forα have only been changed slightly in order to ac-
complish good behavior ofX. The consequent parameters in the model forqp have been changed
substantially. The local interpretation of the linear submodels has been impaired.
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Error Before optimization After optimization
eX 0.29 0.03
eS 0.76 0.06
eP 0.17 0.02

Table 4.5: Optimization results

These results can be explained in two ways. The rules in the fuzzy model overlap, as a result of
which the overall model output is different than described by the linear models. This is shown
in figure 4.27. It is this overall output that determines the performance of the hybrid model. In
addition, the sensitivity ofP for changes inqp is relatively small for rules 1 and 2. The sensitivity
can be calculated using the sensitivity equations (Caracotsios and Stewart, 1985). Results are
shown in figure 4.28. This means that changes in the parameters of these rules do not have a large
impact on hybrid model performance. The sensitivity is relatively large for rule 3. The parameters
of this rule have only been adjusted slightly to improve the hybrid model (see figure 4.26).

Whether behavior as illustrated by the model ofqp should be accepted depends on the objectives
of the modeler. The overall hybrid model performance is good. If, however, according to the
modeler’s judgement, the fuzzy relationship in a certain working area is unrealistic, it could be
rejected. It should be noted that fuzzy logic is still a black box technique and that care should
be taken in associating a physical meaning with the results. Furthermore, it could be argued that
less importance should be attached to areas with low sensitivity in relation to areas with larger
sensitivity. An advantage is that fuzzy logic provides a means to learn more about the relative
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Figure 4.26: Local linear models for α and qp before ((a) and (b)) and after ((c) and (d)) optimization
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Figure 4.27: Fuzzy models for α and qp before ((a) and (b)) and after ((c) and (d)) optimization

importance of working areas. In addition, it allows the modeler to tune performance independently
in these areas.

The sensitivity equations could be used to reduce the size of the optimization problem in advance
by leaving out optimization of parameters with limited sensitivity. It should be noted, however,
that the analysis above was done after the results were obtained and that optimization results may
be slightly different if the complete model is not included in the optimization. It may, for exam-
ple, be difficult to decide when the sensitivity is low enough to exclude a rule from optimization
beforehand.2

4.6 Model adjustment

The model that is built using basic modeling is based on the hypothesis and the available
process measurements. Sometimes, this information may not prove to be sufficient to build
the model. In addition, some of the hypothesis may not be correct (mainly due to simplifica-
tion). This means that the model needs to be adjusted.

In essence, model adjustment is basic modeling, based on the model analysis results. The
results from this step need to state the nature of the problems as clearly as possible. With
this information, a new hybrid model structure is designed, following the basic modeling
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Figure 4.28: Sensitivities for X with respect to α (a) and P with respect to qp (b)

procedure.

Model adjustment can be done in two ways: at the same level of detail or at a higher level of
detail. It is advisable to first try developing another model at the same level of detail before
going to a higher level of detail. If this not possible, then a higher level of detail needs to be
selected. The increase in detail needs to be done in small steps. Based on the results of the
model analysis step, the modeler needs to decide which structure adjustments are necessary.
In principle, this means the addition of model equations. An example is the introduction of
temperature dependency in heat capacity coefficients. In some cases, the adjustment of the
model structure requires the addition of balance equations. If this is the case, the deliberation
needs to be made whether the increase in modeling effort and complexity is justified with
respect to model performance.

4.7 Concluding remarks

The design phase of the hybrid modeling procedure can be summarized as follows:

• Determine the hybrid model structure and distinguish subprocess modeling problems,
for which fuzzy submodels should be developed

• Based on this structure, acquire relevant process data

• Estimate unmeasurable behavior of the subprocesses

• Identify the fuzzy submodels using fuzzy clustering

• Integrate the fuzzy submodels by optimizing their parameters with respect to the hybrid
model output

The steps are performed sequentially and independently of each other. The advantage is that
the modeling problem is split into several simpler problems. Combining the solutions of
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these problems may lead to a non-optimal hybrid model; the result is that an integration step
is needed.

For the subprocess behavior estimation, the PI-estimator is a simple and useful alternative
to more elaborate estimation approaches. It’s simple nature makes it possible to set it up
quickly. Care should be taken, when there is large coupling between two or more parameters
that are estimated simultaneously. For many applications, however, the approach can be
applied without many problems (Van Lithet al., 2001).

Fuzzy clustering provides a good way to identify the fuzzy submodels. It requires little a pri-
ori model structure information. In addition, because of the structure optimization algorithm,
it is insensitive to initialization. It also derives a fuzzy model with independent rules directly
from the data, which results in models that are not likely to show anomalous extrapolation
behavior.

During submodel integration, the parameters of the fuzzy submodels are optimized with re-
spect to the hybrid model output. To maintain part of the results from the identification step,
these fuzzy models should be used as a starting point, which makes gradient based optimiza-
tion algorithms suitable tools.

Although algorithms for optimizing large sets of parameters are available, it is obvious that
the number of parameters should be kept as low as possible. This makes sensitivity analysis
worthwhile. In addition, the optimization problem can be reduced by optimizing rule weights
or model weights.

Model adjustment essentially provides a feedback procedure to adjust the model structure
if a hybrid model performs unacceptably. The model adjustment step incorporates the same
elements as the basic modeling step. Based on the initial hybrid model, a new model structure
can be developed, after which the data acquisition, subprocess behavior estimation, submodel
identification and integration steps are performed.
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To illustrate the concepts of the structured hybrid modeling approach, this chapter will
deal with the development of a more elaborate hybrid model than discussed in the previous
chapters. In addition, this model will provide the basis for a discussion on hybrid model
properties, by comparing it with the two ”extremes” of the hybrid modeling spectrum: a first
principles model and a fuzzy model. This provides more information about the applicability
of hybrid model in general.

A continuous pulp digester was selected as the test case. This is a unit operation used to
produce paper pulp from wood chips. It is a nonlinear distributed parameter process, of which
the process conditions vary considerably. In addition, the description of the internal behavior
often is empirical, for which many different approaches exist. This makes the process suitable
for development of a hybrid model.

For the comparison, a first principles model is available in the form of the Extended Purdue
Model, an industrially accepted benchmark model for the process. This is a rigorous model
that describes the internal and overall dynamic behavior of the digester. The first principles
model will provide the basis for hybrid model development, which means that the hybrid
model is not based on actual process data. However, by using this approach, it will be pos-
sible to investigate which essential characteristics of the process should be described, while
good performance and interpretability is maintained. The rigorous model will be reduced to
a simpler model structure which describes the essential behavior of the digester, given the re-
quirements that were defined for the hybrid model. As a result, new model equations need to
be derived, by which the hybrid modeling approach can be illustrated. The fuzzy model will
also be based on the first principles model. Input-output data, generated by the first principles
model, is used to construct the fuzzy model.

The comparison of the three models will be based on the five model quality aspects: static
performance, dynamic performance, complexity, interpretability and process independence.
The evaluation will be related to the three general areas of model applications: research and
development, design and control.

First, this chapter will discuss the pulping process and the first principles model. Based
on this information, the hybrid model objective and model requirements will be discussed,
followed by the design and evaluation. Then the fuzzy model will be designed and evaluated,
after which the three models will be compared.

5.1 Process description

The production of pulp for paper products has been a widely studied subject, especially
in the Scandinavian countries and Canada. In particular, the continuous digester, the unit op-
eration for manufacturing pulp, has received much attention. It is a challenging unit operation
for control studies due to unmeasured disturbances, long time delays and nonlinear behavior
(Wisnewskiet al., 1997). In addition, different interpretations about the physical processes
that take place have been the basis for model development, resulting in a variety of models.
This makes the unit operation an interesting candidate for developing a hybrid model.
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For more information about wood and pulp processing, the reader is referred to Jahn and
Strauss (1992).

5.1.1 Wood and pulp processing

Wood contains a mixture of polymers that can be split in three groups:

• Lignin (20 - 30%)

• Cellulose

• Hemicellulose; anhydrides of Xylose, Arabinose, Glucose, Mannose, Galactose, Xylan
and Galactoglucomman

The strength of the wood structure comes from the cellulose fibers. Cellulose is a very strong,
chemically highly resistant, fiberous polymer. The other elements are easily degradable by
treatment with acids or bases.

Lignin serves to hold the cellulose fibers and other elements and binding them together into
the anatomical structure we know as ”wood”. Lignin is susceptible to degradation and dis-
solution by treatment with strong bases under elevated temperatures. Lignin can also dis-
integrate when treated with acid sulphite solutions or oxidizing agents. Thus, lignin can be
removed from the wood, leaving separated cellulose fibers in the form of a pulp. This pulp can
then be processed to produce paper. The main quality parameter for the pulp is the so-called
Kappa numberκ#, which is a measure for the amount of lignine in the wood.

In general, the paper production process incorporates:

• Wood preparation

• Pulping (mechanical or chemical)

• Pulp screening and cleaning

• Pulp bleaching

• Paper production

Mechanical pulping is used for low quality paper. With mechanical pulping, a log is pressed
against a rotating disc or cylinder, which yields what is called groundwood pulp. In this work,
the focus is on chemical pulping.
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Wood preparation

Bark contains many short fibers besides colored, non-fiberous materials. This yields pulp
that is not suitable of making paper. If the pulp contains bark, the resulting paper is not very
strong and discolors. Therefore, the bark needs to be removed as much as possible. This is
accomplished by letting the logs scrub each other in a rotating cylinder. Other methods exist
to debark the logs, for example removing the bark with knives or by means of water jets.

After the logs have been debarked, the wood can be used directly in the following production
steps. When the wood is used as raw material for chemical pulping, it is necessary to chop
the logs into wood chips. These woodchips usually have dimensions of about 0.5 x 2cm.
The logs are chopped into thin slices using a rotating disc containing radial placed knives.
The slices fall apart to the desired woodchips due to the enormous forces the rotating discs
exert on them.

Chemical pulping

Lignin constitutes approximately 20 to 30 % of the total weight of wood. In manufactur-
ing purified pulps of high whiteness, it is necessary to remove as much lignin as possible with
minimum loss or degradation of the carbohydrate cell wall. Usually this is done by pulping
to liberate the fibers and then bleaching the fibers to the desired whiteness. Unbleached pulps
are usually dark brown in colour and are used in that form for grocery bags and wrapping
paper.

Lignin is not a pure component, but can be considered as a class of substances. Lignin is a
complex, three-dimensional polymer containing mostly phenylpropane units joined together
by various ether and carbon-carbon linkages. Aim of the chemical pulping processes is to
deliberate the lignin by dissolving or degradation. There are two methods to accomplish this:
reactions with acids or bases. Both methods are carried out in an aqueous environment under
elevated pressure and temperature.

The sulphite process uses a cooking liquor of sulphurous acid and a salt of this acid. While
calcium was the most widely used base at a time, it has been replaced with sodium, magne-
sium, and ammonia. The sulphate process uses a mixture of sodiumhydroxide and sodium-
sulphide as the active chemical. The term sulphate process is used because sodiumsulphate
is used as make-up chemical. The wordKraft is also used to refer to this process for it is the
German word meaning ”strength”. This method produces the strongest pulp. In the past, am-
monium base NH4OH was used and had the ”advantage” that this liquor could be vaporized
and burned without any residue. Only air pollution occurred. The SO2 in the gas effluents
can be lead through a gas-washer and react with fresh ammoniumhydroxide.

The sulphite process is carried out in batch reactors using longer residence times than the
Kraft process with temperatures of 140-150◦C. This process is most appropriate for wood
species such as spruce and pine trees where a relatively light colored and strong pulp is
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Figure 5.1: Digester unit operation (a) and functional zones (b)

produced. The sulphite process can therefore be found in those regions where the wood
species mentioned above exist.

5.1.2 The continuous pulp digester

The continuous pulp digester is a unit operation designed to convert woodchips into a
cellulose fiber pulp. The pulping of the woodchips is accomplished by cooking the woodchips
in a hot solution of sodium hydroxide and sodium sulphide, referred to as ”white liquor”. The
digester is essentially a tubular reactor, where woodchips travel from the inlet at the top to
the outlet at the bottom of the digester. The surrounding liquor flow is either in co-current
or in counter-current with respect to the woodchips, dependent on the functional zone where
the woodchips are flowing. A schematic overview of the digester and its functional zones is
given in figure 5.1.

In the impregnation zone the woodchips are brought into contact with a co-current flow of
white liquor. The white liquor components (primary sodium hydroxide and sodium sulphide)
diffuse into the pores of the porous woodchips. As the temperatures in this zone are relatively
low (around 385K), practically no delignification takes place. The length of the impregna-
tion zone is 5.5m.
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Reactor height 32 m
Reactor diameter 5 m
Throughput 3.7 m3/min
Pulp yield 600 t/d
Residence time 2 h
Pressure cooking zone 7 bar
Reaction temperature 430 K

Table 5.1: Typical digester dimensions and operating conditions

In order to reach the required reaction temperatures, in the various zones part of the white
liquor flow is drawn off the digester. After being heated in external heat exchangers, the white
liquor flow is fed back into the heating zone. The white liquor is supplied through a system
of concentric pipes. The digester contains two heating zones for gradually heating the white
liquor to the desired reaction temperatures. This way, the upper heater may be considered as
a pre-heater. The actual temperature control is achieved by adjusting the lower heater outlet
temperature. The upper heater outlet temperature is approximately 410K, the lower heater
outlet temperature is about 430K. The total length of the heating zones extends to 4.7m.

The actual delignification takes place in the cooking zone, which extends to 12m. The
majority of the delignification takes place in this section. The Kappa number of the pulp is
drastically reduced. The reaction products diffuse into the white liquor at the same time the
reactants diffuse from the white liquor into the pores of the woodchips. In the cooking zone,
typical temperatures are about 430K and pressures are about 7bar (Jahn and Strauss, 1992).

A concentric pipe ending 1.5m above the end of the cooking zone injects a relatively cold,
non-reactive liquor flow. The temperature of the woodchips is reduced and the delignifica-
tion reactions are quenched. The quench liquor is a process flow coming from the digester,
referred to as ”black liquor” which is essentially a contaminated mixture of white liquor and
wash liquor. Black liquor contains few reactive components.

In the washing zone, a counter current flow washes the degradation products from the pulp. In
the counter current region a large average driving force is maintained between the woodchips
and the washing liquor. A process flow referred to as ”filtrate” is used as washing liquor.
The wash liquor feed configuration presented in figure 5.1 is a simplified one. In an actual
digester, a part of the wash liquor is fed into the digester through the cold blow line, which
prevents caking of the pulp in the bottom of the digester. The temperature of the wash liquor
has a large influence on the pulp quality. As diffusion is favored by high temperatures, more
degradation products are washed from the pulp at higher temperatures. However, too high
temperatures cause continuation of the delignification process, damaging the cellulose fibers
structure yielding an inferior paper quality.

In the cooling zone, part of the injected filtrate flow goes down and thus travels co-current
with respect to the woodchips. This flow cools the woodchips. At the bottom of this zone,
the outlet device is located.

Typical digester dimensions and process conditions are given in table 5.1.
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5.1.3 Digester control

The primary control objective for the digester is to produce pulp at a specified Kappa
number at maximal yield. A Kappa number that is too high increases the cost necessary
to bleach the pulp, a Kappa number that is too low means damaging the cellulose fibers
and using more chemicals and energy than necessary. Process optimization involves using
a minimum input of energy and chemicals to achieve the target Kappa number. Adequate
process control minimizes the variation in the measured Kappa number and creates room for
optimization because it enables operating more closely to the target Kappa number.

Controlling the digester is a difficult task because of the long time delays involved, non-linear
behaviour and unfrequent availability of process measurements. The Kappa number can only
be determined by an off-line analysis, taking up to one hour. If a disturbance affecting the
Kappa number occurs, it will take at least one process dead time increased by the time re-
quired for analysis before the disturbance is detected. Furthermore, because many inputs
affect the Kappa number, multivariable control is highly appropriate for the digester.

Traditional digester control involves stabilizing the most important variables of the process
in such a way that reaction conditions remain constant. Variations in observed or estimated
Kappa number are compensated by adjusting the lower heater outlet temperature.

5.2 Extended Purdue Model

The Kraft pulping process for both batch and continuous digesters has been modeled to
various levels of complexity. Wisnewskiet al. (1997) present a short overview of digester
modeling based on physical principles. In addition, modeling approaches include black box
techniques such as Wiener models (Godasi and Palazoglu, 2001), Partial Least Squares mod-
els (Alexandridiset al., 2001) and neural networks (Dufouret al., 2001).

A well known first principles model for a continuous pulp digester is the Purdue Model
(Smith and Williams, 1974) which is a detailed and industrially accepted digester model
(Wisnewskiet al., 1997). The model has been extended by providing improved definitions
of mass concentrations and volume fractions and a more detailed description of the mass and
energy transport. This Extended Purdue Model (EPM) is described in detail in Wisnewskiet
al. (1997) and will serve as the reference model for hybrid and fuzzy model development.

5.2.1 Model structure

In Wisnewskiet al. (1997), the continuous pulp digester is modeled as a series of 50
Continuously Stirred Tank Reactors (CSTR’s) leading to a lumped parameter system. Con-
sequently, true plug flow behaviour is approached. Modeling the digester as a Plug Flow
Reactor (PFR) instead would yield partial differential equations (PDE’s). However, modern
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Figure 5.2: Digester unit operation (a) and model flowsheet (b)

simulation packages such as gPROMS are able to solve PDE’s directly. Therefore, the CSTR
description is transformed to a distributed parameter system (Jansen, 2000). This yields the
flexibility to solve the model as accurately as needed. By specifying more discretization in-
tervals, more accurate results will be obtained. In a CSTR series approach, this can only be
achieved by changing the model structure. The digester model ”flowsheet” is based on the
CSTR model structure and incorporates the heater and recycle loops. The model flowsheet is
shown in figure 5.2.

The digester model is implemented by treating certain disturbances constant and implement-
ing them as parameters. In an actual digester, these parameters are not constant and change
over time. Some of the disturbances are non-measurable and difficult to anticipate. In the
context diagram (figure 5.3), the most important digester unit operation inputs, outputs and
disturbances are shown.

In the model, the following process input disturbances are treated as constant with respect to
time:

• Compaction behaviour. The model uses a linear compaction profile throughout the
digester. In an actual digester, the compaction profile will vary with time and place.
Especially at the extraction screen, the woodchip hold-up fluctuates. Furthermore, the
assumed compaction profile will represent a mean situation that never occurs in actual
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Figure 5.3: Digester context diagram

digester operation.

• White liquor is supplied from a preceding unit and will posses varying alkali contents
with respect to time.

• The filtrate composition (weak black liquor) will also vary, because it is made up in
preceding process apparatus.

• Kinetic parameters. Different wood species have different kinetic parameters and these
will more or less vary among woodchips. The modeled values are to be treated as mean
values.

• Composition of woodchips. There are many wood species and composition will vary
along individual woodchips of the same species, due to variable moisture content or
age.

5.2.2 Modeled states

The most important output variable of a digester is the Kappa number. The primary
objective of digester control is to maintain the Kappa number within certain limits. The
Kappa number measures the amount of residual lignin within the woodchips. In addition,
the overall digester yield is often calculated. The yield is a measure of the amount of wood
substance recovered in comparison with the amount of wood substance fed to the digester.

In order to calculate these properties using a physical model, the appropriate wood and liquor
components need to be modeled, as well as the temperature in the digester. In the EPM,
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Phase Index State Modeled effects Additional algebraic
equations

Chip s, 1 High reactive lignin Convection, reaction Reaction rate
s, 2 Low reactive lignin ,, Reaction rate
s, 3 Cellulose ,, Reaction rate
s, 4 Galactoglucomannan ,, Reaction rate
s, 5 Araboxylan ,, Reaction rate

Temperature Convection, reaction heat,
conduction, diffusion,

bulkflow

Diffusion coefficient

Entrapped e, 1 Active alkali Convection, reaction,
diffusion, bulkflow

-

e, 2 Passive alkali ,, -
e, 3 Active hydrosulfide ,, -
e, 4 Passive hydrosulfide ,, -
e, 5 Dissolved lignin ,, -
e, 6 Dissolved carbohydrates ,, -

Free liquor f, 1 Active alkali Convection, diffusion,
bulkflow

-

f, 2 Passive alkali ,, -
f, 3 Active hydrosulfide ,, -
f, 4 Passive hydrosulfide ,, -
f, 5 Dissolved lignin ,, -
f, 6 Dissolved carbohydrates ,, -

Temperature Convection, reaction heat,
conduction, diffusion,

bulkflow

-

Table 5.2: EPM overview

three phases are distinguished: the solid phase, which comprises the wood substance, the free
liquor phase, and the entrapped liquor phase, which comprises the liquor that has entered the
porous wood chips. This phase serves as a transport medium for mass and energy from the
internal wood surface of the woodchips to the surrounding bulk, the free liquor phase. The
woodchips, having a slightly larger velocity, travel down with the free liquor. The modeled
components are shown in table 5.2. The index denotes how the components will be referenced
in the equations.

The Kappa numberκ# and the yieldγ can be calculated as follows:

κ# =
ρs,1 + ρs,2

0.00153
∑5

i=1 ρs,i

(5.1)

γ =
∑5

i=1 ρs,i,exiting∑5
i=1 ρs,i,entering

(5.2)

in which ρ denotes the mass concentration of a substance and the subscripts refer to the
species given in table 5.2.

The EPM incorporates temperature dependent mass diffusion, temperature dependent reac-
tion rates, composition dependent heat capacities and heat exchange between entrapped and
free liquor phase due to conduction. In addition, the following assumptions have been made:

• Adiabatic behavior; no heat exchange with the surrounding environment

• No radial gradients in temperature or composition

• Entrance, wall and cross flow effects are neglected
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Figure 5.4: Steady state Kappa profile (a) and temperature profiles (b). Solid line Tc, dashed Tf

• Compaction profile is known and constant with time

The EPM equations and parameter values are given in appendix C. The data flow diagram
(DFD) is also presented there.

5.3 Extended Purdue Model analysis

Since the EPM will serve as the reference in this study, the complexity, interpretability
and process independence of the model will be analyzed (see figure 3.2). This analysis can be
used later for comparison with the hybrid model and the fuzzy model. In addition, the EPM
will be analyzed with respect to its purpose in this work; to provide a basis for developing
a hybrid model that is used to investigate hybrid model quality properties. First, the general
behavior of the EPM will be discussed.

5.3.1 Model behavior

Static and dynamic behavior

The steady state Kappa number profileκ#(z) of the reactor for typical operating condi-
tions is given in figure 5.4. The temperature profile of the solid and entrapped phaseTc(z)
and of the free liquor phaseTf (z) are shown as well. The model simulation was carried out
with 50 discretization steps for the reactor heightz.

The Kappa profile indicates that little reaction occurs in the impregnation zone (0 < z <
5.5 ). This is due to relatively low temperatures. After the heating zone, the temperature is
much higher and significant reaction takes place, which results in a decrease ofκ#. In the
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Figure 5.5: Steady state active alkali (a) and active hydrosulfide profiles (b). Solid line entrapped phase,
dashed free liquor phase

wash zone (21.5 < z < 28.3 m), the reaction is quenched by the cold counter current wash
flow. The degradation products are washed from the pulp, not affecting the Kappa number
κ#.

The wood chips that enter the digester have a higher temperature than the white liquor (fig-
ure 5.4). At the end of the impregnation zone, the temperatures are the same. At the upper
heater outlet, hot free liquor enters the digester and as a result, there is a discontinuity in the
free liquor temperature. The same is true for the temperature at the lower heater outlet. In the
cooking zone, reaction temperature is reached. The exothermic reactions cause a further in-
crease in temperature; the temperature of the wood chips is higher than that of the free liquor.
The counter-current flow in the washing section results in a constant temperature difference
between the chips and the liquor.

Figure 5.5 shows the active alkaliρe,1, ρf,1 and active hydrosulfideρe,3, ρf,3 concentration
profiles, the main components of the white liquor. In the impregnation zone, concentration
equalization due to diffusion takes place. The pores of the woodchips are initially filled
with water. As the woodchips travel co-currently with the surrounding free liquor along the
impregnation zone, concentrations of entrapped and free phase components approach each
other. At the heater outlets, small discontinuities occur due to mixing with free liquor having
a slightly different composition. Along the cooking zone, the active alkali concentration
decreases due to exhaustion. Diffusion from the free phase into the entrapped phase within the
woodchips takes place. In the washing zone, the effective alkali concentrations are reduced
drastically, due to the counter current wash flow.

In the impregnation zone, the dissolved lignin diffuses from the free liquor phase (ρf,5) into
the entrapped phase (ρe,5). Because the entering free liquor flow is mixed with black liquor,
there are already dissolved solids present in the entering free liquor flow (figure 5.6). In the
beginning of the cooking zone, the temperature is high enough to cause significant deligni-
fication. As a result, the concentration of dissolved lignin in the entrapped phase becomes
higher than the surrounding free liquor phase. Diffusion is the mechanism responsible for
the flow of dissolved solids to the free liquor. Due to the delignification process, the free
liquor absorbs more and more dissolved lignin, causing the concentrations to increase. In the
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Figure 5.6: Steady state dissolved lignin profile. Solid line entrapped phase, dashed free liquor phase

washing zone, the degradation products are washed from the pulp by bringing the entrapped
liquor into contact with a relatively clean counter-current washing liquor.

To illustrate the dynamic behavior of the EPM, several experiments were carried out, based
on the experiments in Wisnewskiet al. (1997). The experiments involve step changes in the
lower heater heat supplyQlh (with constant upper heater heat supplyQuh) and the white
liquor flow φf . In addition, Bode diagrams for the Kappa number and the yield as a function
of Qlh andφf are constructed. Frequency analysis results are shown in table 5.3. The table
also shows the response amplitudes∆κ# and∆γ for a positive and a negative step change,
respectively.

The step changes are performed att = 0 min. The response to a 10 % increase or decrease in
lower heater heat supply (figure 5.7) indicates a negative gain (the higher temperature results
in a higher reaction rate and thus in a lower kappa number). The gain of the response to a 7
% change step in the free liquor flow rateφf at constantQlh andQuh is positive (reaction
temperature is lower since the same heat is supplied to more liquor), as shown in figure 5.8.

Figures C.4 to C.7 in appendix C show Bode diagrams for the yield and the Kappa number
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Figure 5.7: Kappa (a) and yield (b) response to steps in lower heater heat supply. Solid line positive
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of the EPM. The response of the system was not simulated for very high frequencies due to
numerical inaccuracies. Time constantsτ and system orderO are obtained from the Bode
diagrams and are listed in table 5.3. The figures show second order behavior for changes in
Qlh, while third order behavior is observed for changes inφl. The higher order for changes
in the flow rate (whileQlh is constant) is caused by the change in concentration. This is
an additional effect that is not observed for changes inQlh, since during these changes, the
flow rate is kept constant. The fraction in the orders is caused by numerical dispersion. For
example, a block pulse is affected by numerical dispersion, which results in detection of a
slightly higher order. In addition, there may be some inaccuracies in the Bode diagram. The
dead times were determined using step changes in the inputs.

Overall mass balance

The performance of the EPM can be verified with respect to its overall mass balance. The
mass balance is calculated for standard operating conditions, while ignoring the mass flow
of the solvent (water). This way, the mass balance describes only the ingoing and outgoing
mass flows for the components that are solved and the solid phase mass flow. The actual
throughput will be larger. Results are shown in table 5.4.

Minor differences due to numerical inaccuracies may be tolerated. The error in the mass
balance amounts to 1.0 %. This is very reasonable and indicates that there are no errors in
model consistency with respect to the mass balances.

Input O[input],κ O[input],γ τ[input],κ τ[input],γ θ[input] ∆κ# (−) ∆γ (−)
(min) (min) (min)

Qlh 2.3 2.3 42 43 87 -5.51, 6.17 -0.022, 0.022
φf 2.9 3.3 35 35 113 4.71, -4.06 0.019, -0.020

Table 5.3: Frequency response analysis results for EPM
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Stream Mass flow in (kg/min) Mass flow out (kg/min)
Solid 751.9 416.1
Entrapped 0.057 118.7
Free 496.5 51.7
Extraction - 802.4
Filtrate 154.7 -
Total 1403 1389

Table 5.4: Overall mass balance EPM

5.3.2 Complexity

The complexity of the EPM is analyzed using the model flowsheet and the DFD, given in
appendix C. The model flowsheet consists of 10 sections of different length. These sections
are a more detailed representation of the five functional sections in the digester (impregnation,
heating, cooking, washing and cooling) and are needed to be able to implement the various
heater recycle loops and screens. The flowsheet is straightforward and not complex.

The DFD however, is somewhat more complex. It represents the model that is used for each
section in the flowsheet. The diagram is constructed in accordance with general guidelines
for designing DFD’s (Yourdon, 1989). The connections between the effects that are modeled
(see also table 5.2) are clearly shown.

The DFD is constructed for the general classes of components (solid phase, entrapped phase
or free liquor phase components). Including each component separately would result in an
unnecessary complex diagram; there are 17 components in total. The disadvantage is that the
connection between the components through the reaction stochiometry and heat capacity is
not represented.

The most complex equations in the EPM are the mass and energy balances. The other equa-
tions are nonlinear algebraic equations that are rather straightforward. The complexity of the
model equations is relatively low because equation substitutions are kept to a minimum.

5.3.3 Interpretability

The model flowsheet represents the physical structure of the digester and its connection
with other unit operations (the heaters). Due to the low level of complexity, interpretation is
straightforward. The strength of the model is that it provides information at a detailed level.
The different physical phenomena and phases that are modeled by section models of the EPM
are clearly represented in the DFD and can be interpreted.

The equations that can be interpreted best are the mass and energy balances. Each term in
these equations represents a physical phenomenon such as mass transfer or heat generated
by the reaction. The algebraic equations that describe these phenomena cannot be easily
interpreted from a first principles point of view. Many include lumped parameters (such as the
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heat transfer coefficientU ) or are fitted to empirical data (such as the relation for the diffusion
coefficientDce. This is the result of the level of detail of the model; more detailed behavior
(for example on the level of a wood chip particle) is not included. The only interpretation
that can be given to these equations is the type of mathematical dependence (linear, quadratic,
etc.).

5.3.4 Process independence

Process independence is determined by the sources of information that are used during
the construction. For the EPM, first principles are the most important source of information.
No or little experimental data is available to construct a model that can describe the concen-
tration profiles in the way the EPM does. The behavior is mainly determined by the level of
first principles information that is used. This is augmented by expertise that is available in
the industry, which is based on lab experiments or observed behavior. The relation for the
diffusion coefficient and the introduction of several fit parameters are examples of this.

The detailed description of the behavior and the first principles basis result in a certain level of
process independence. The model can be used for different installations of this type of reactor,
probably after fine-tuning of some of the coefficients. In addition, the EPM is an extension of
an industrially accepted digester model, the Purdue Model (Wisnewskiet al., 1997), which
illustrates successful application on a wide variety of installations.

With respect to process design, the EPM has limited application possibilities. It only pro-
vides global information about design parameters. The empirical relations may have limited
validity, which makes the model more suited for process operation studies than for process
design.

5.3.5 Remarks

The quality of the EPM with respect to a traditional application (controller design, pro-
cess optimization) is not discussed here. Some aspects of application in the three general
areas (R&D, design and control) will be discussed later. However, whether the model quality
meets the requirements with respect to the application in this work can be analyzed.

The EPM will serve as the basis for hybrid and fuzzy model development. In addition, it
will be compared with the hybrid and the fuzzy model with respect to model quality. The
EPM is suitable for these purposes, as was shown in this section. It provides a dynamical
description of a nonlinear process with a large operating regime. The description is detailed
and can be reduced to a more simple structure, which only describes the essential behavioral
characteristics. This means that new model equations need to be derived, as will be presented
in the following section. In addition, the EPM can be used as a simulator to provide process
data for the identification of hybrid and fuzzy model parameters.
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5.4 Hybrid model problem definition

5.4.1 Objective

The objective of the hybrid model of the pulp digester is to facilitate the investigation of
different hybrid model properties in comparison to models at the extremes of the spectrum:
first principles models (in this case the EPM) and fuzzy models. Based on this analysis,
conclusions can be drawn about the ”position” of hybrid models in this spectrum, which pro-
vides more information about the applicability of hybrid models in general. The analysis can
be performed by evaluating model quality with respect to model performance, complexity,
interpretability and process independence.

In addition, it is interesting to determine how well such a hybrid model can deal with sim-
plified dynamics, without impairing performance and physical interpretation. In other words,
the hybrid model needs to describe theessential physical characteristicsof the pulp digester
with respect to the application of the model. The key variables and model requirements then
provide the basis for determining the most important characteristics that should be included
in the model.

5.4.2 Key variables and requirements

The major quality requirement of the hybrid model is that it can be compared to the EPM.
Together with the objective, this breaks down into the following requirements:

1. The hybrid model of the pulp digester should describe the Kappa numberκ# and
the yield γ.
The two most important variables are the Kappa numberκ# and the yieldγ, especially
at the reactor outlet. These are thekey variablesof the hybrid model. This means that
the model needs to describe the concentrations of the reactants in such a way thatκ#
andγ can be calculated.

2. Dynamic and static behavior should match the behavior of the EPM.
This means that the hybrid model should be dynamic and that the states should be
modeled in such a way, that the same type of behavioral interpretation can be given to
the hybrid model as can be given to the EPM.

3. The hybrid model structure needs to be based on physical principles.
Since the model will be hybrid, part of the structure will be based on first principles.
In addition, the input-output structure of the fuzzy submodels needs to be physically
interpretable. In general, this does not have to be the case. For this model however,
input-output structure interpretability is required to maintain a certain level of hybrid
model interpretation, in order to make comparisons to the EPM possible.

4. The hybrid model structure needs to be less complex than the EPM.
One of the goals is to describe the digester behavior with a model that is based on the
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essential physical phenomena that play a role. This results in a model that is less com-
plex than the EPM, but still provides a high level of interpretability. With respect to
this, it is interesting to investigate how model performance depends on the simplifica-
tions.

From equations 5.1 and 5.2, it can be concluded that the concentrations of the wood com-
ponents need to be modeled in order to calculateκ# andγ. Not all concentrations need to
be modeled separately, though. With respect to the EPM, components(s, 3) to (s, 5) can be
lumped, which still provides sufficient information to calculate the two key variablesκ# and
γ. The next step is to determine in detail which components need to be modeled and what
the hybrid model structure should be to meet the requirements.

5.5 Hybrid model design

The design of the hybrid model for the pulp digester can be interpreted as a ”bottom up”
procedure. Taking the key variables and the requirements as a starting point, the relevant
states and physical processes are determined, followed by the model structure with respect to
the unit operation. After this, model identification can take place.

This section presents the various steps of the design phase: basic modeling, data acquisition,
subprocess behavior estimation, submodel identification and submodel integration.

5.5.1 Basic modeling

The apparent choice is to derive the hybrid model structure from the EPM by a form
of model reduction. By formulating interpretability requirements, the model reduction is
performed from a physical point of view instead of a mathematical point of view. This way,
requirement 4 is met. Based on requirements 1, 2 and 3, the behavior of the digester can be
analyzed and process hypotheses describing the essential behavior can be formulated.

Step 1: Process description and information analysis
The process is described in section 5.1. The EPM provides detailed information about the
behavior, which can be used during model identification. In particular, the state profiles
over the reactor are useful; it is quantitative physical information. From these, all additional
variables and parameters can be derived. In addition to the model structure and expertise
that is available from the field of digester modeling, these profiles are an important source of
information.

Step 2: Process hypotheses
In the digester, wood reacts with liquor to remove lignin from the wood. It is a two-phase
system; there is a wood phase and a liquor phase. The flow regime is plug flow. To start
the reaction, the liquor is heated. At a certain point, the reaction is quenched by washing the
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wood with cold liquor.

In this system, the following phenomena take place: convection, reaction, mass transfer and
heat transfer. These phenomena can be unified in a framework of dynamical mass and energy
balances. In the EPM, the phenomena are described by static algebraic equations, which
determines the level of detail that is available. To meet requirement 2, the phenomena should
by described in a similar fashion in the hybrid model.

Step 3: Process structure
The derivation of the process structure involves the model reduction step. The reduction
will be performed on two levels: on the level of the model flowsheet and on the level of the
section model. In both cases, the goal of the reduction is to determine the most important
model characteristics, with a minimum loss of transparency (requirement 2 and 3).

The model flowsheet of the EPM consists of 10 sections, which are located in 5 ”functional
zones” (see figure 5.1). The functional zones are relevant for the interpretation of the behav-
ior and should be maintained in the hybrid model. The number of sections, however, is less
important for meeting the interpretability requirements; interpretation of the Kappa number
profile, for example, does not require detailed information about the quench recirculation. In
particular, the double heater recycle loop can be omitted without compromising interpretabil-
ity. The function of the heaters is to initiate the reaction, which for the most part takes place
in the cooking zone. This is indication by the drop inκ# in figure 5.4. The same functional
interpretation can be given to a single heater that provides the same amount of energy as the
two heaters combined. In addition, the heater recycles can be omitted. This may influence the
dynamic behavior of the model and therefore should be investigated in the evaluation phase.

As a result, the hybrid model can describe each functional zone with one section. There are
thus four sections (figure 5.9):

• Section I: Impregnation

• Section II: Cooking

• Section III: Washing

• Section IV: Cooling

The section model of the EPM describes three phases which contain 17 components in total.
Mathematically, there is no need to describe the solid and entrapped phase separately. The
EPM does not describe mass or heat transfer between the two phases. The description of the
reactions that take place do not require specific information about the phases, except for the
concentrations of the reactants. The concentration of the solid species is based on the volume
of the chips (which is equal to the sum of the volumes of the solid and entrapped phase),
while the concentration of the entrapped species is based on the volume of the entrapped
phase. In addition, the concentrations in the entrapped phase are required to describe mass
and heat transfer between the entrapped and free liquor phase.

The section model can be simplified by lumping the entrapped and solid phase to a ”reaction
phase”, which essentially describes the physical phenomena in the wood chips. The poros-
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Figure 5.9: Digester unit operation (a) and hybrid model flowsheet (b)

ity ε (see equation C.16) can be used to compensate for the change in concentration of the
entrapped components, which as a result of the lumping is based on the chip volume instead
of the entrapped liquor volume. As a result, the hybrid model will describe two phases, a
reaction phasewhich corresponds to the solid and entrapped phases of the EPM, and aliquor
phase, which corresponds with the free liquor phase in the EPM. The assumption will be
made that the reaction phase is ideally mixed and that bulkflow can be neglected.

The hybrid model needs to describe the Kappa numberκ# and the yieldγ. This means that
the concentrations of the wood species(s, 1) to (s, 5) are required. However, species(s, 3)
to (s, 5) are not required explicitly. The section model can be simplified by lumping them to
a species ”carbohydrates”.

A similar approach can be followed for the species in the liquor phase. In the EPM, the use
of different species in the free liquor phase is only required to be able to describe the reaction
rate; the reaction rate equation C.6 requires species(e, 1) and(e, 3). Thus(f, 1) and(f, 3)
are required. A transparent simplification can be accomplished by viewing upon the reaction
as a reaction between ”lignin” (species(s, 1) and(s, 2)), ”carbohydrates” (species(s, 3) to
(s, 5) lumped) and ”liquor” (species(e, 1) and(e, 3) lumped). This reduces the number of
differential equations in the model, while still meeting interpretability requirements.

The result of the lumping of the phases and species is that the kinetic equations of the EPM
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Phase Index State Modeled effects Additional fuzzy
equations

Reaction r, 1 High reactive lignin Convection, reaction,
diffusion

Reaction rate

r, 2 Low reactive lignin ,, Reaction rate
r, 3 Carbohydrates (cellulose,

galactoglucomannan,
araboxylan)

,, Reaction rate

r, 4 Active liquor (active alkali,
active hydrosulfide)

Convection, reaction,
diffusion

-

r, 5 Passive liquor (passive
alkali passive hydrosulfide)

,, -

r, 6 Dissolved lignin ,, -
r, 7 Dissolved carbohydrates ,, -

Temperature Convection, reaction heat,
conduction, diffusion

Diffusion coefficient

Liquor l, 1 Active liquor (active alkali,
active hydrosulfide)

Convection, reaction,
diffusion

-

l, 2 Passive liquor (passive
alkali passive hydrosulfide)

,, -

l, 3 Dissolved lignin ,, -
l, 4 Dissolved carbohydrates ,, -

Temperature Convection, reaction heat,
conduction, diffusion

-

Table 5.5: Hybrid model overview

are no longer valid. These relations are nonlinear and cannot be easily transformed to accom-
modate the new species (see equations C.6, C.7 and C.8). To describe the reaction rates in the
hybrid model, fuzzy equations will be used. These will be derived from observed behavior.
In addition, the diffusion coefficientDce will be described by a fuzzy equation. In the EPM,
an empirical equation was used. Due to the lumping of the entrapped and free liquor phase
species, diffusion behavior is affected (see equation C.3).

The reaction rates of the other species in the EPM are calculated through reaction stochiom-
etry (equations C.9 and C.35). Since this operation and the lumping are both linear with
respect to the components, the new reaction stochiometry can readily be calculated from the
stochiometry in the EPM.

To build a consistent hybrid model with closed mass and energy balances, the reaction prod-
ucts need to be described as well. This results in the overall section model as is presented in
table 5.5.

Step 4: Basic equations
Similar to the EPM, each section of the hybrid model will be modeled using the same section
model. The Kappa numberκ# and the yieldγ can be calculated as follows:

κ# =
ρr,1 + ρr,2

0.00153
∑3

i=1 ρr,i

(5.3)

γ =
∑3

i=1 ρr,i,exiting∑3
i=1 ρr,i,entering

(5.4)

in which ρ denotes the concentration inkg/m3 of a species and the subscripts refer to the
species given in table 5.5.

The physical framework of the hybrid model will consist of 13 states:
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• Mass balances for species(r, 1) to (r, 7)

• Mass balances for species(l, 1) to (l, 4)

• Energy balance for the reaction phase, resulting in the reaction phase temperatureTr

• Energy balance for the liquor phase, resulting in the liquor phase temperatureTl

To meet requirement 3, the states are described as a function of time and location in the
reactor. The structure of the state equations is similar to the structure of the state equations in
the EPM.

The reaction ratesRr,i of components(r, 1) to (r, 3) will be described by fuzzy equations,
while the other reaction rates are derived from them through stochiometry. The reaction
rate depends on the species concentration, the liquor concentration, and the reaction phase
temperature. This results in the following structure:

Rr,i = ffuzzy(ρr,i, ρr,4, Tr) for i = 1 . . . 3 (5.5)

The diffusion coefficientDcr is also described by a fuzzy equation. The simplifications affect
the behavior of the diffusion. The lumping of species(e, 1) and(e, 3) and(f, 1) and(f, 3),
respectively, is nonlinear with respect to the diffusion term. This will be discussed later.
Similar to the EPM, it will depend on the reaction phase temperature:

Dcr = ffuzzy(Tr) (5.6)

Other section model equations involve simple linear algebraic equations that calculate the
total mass of a phase, the overall heat capacity of a phase, etc.

The heaters in the hybrid model are described by the same equations as in the EPM. The
complete set of model equations and the hybrid model DFD are presented in appendix D.

5.5.2 Data acquisition

Except for the fuzzy models, all parameters of the hybrid model can be obtained from
the EPM. The EPM is used as a benchmark model and has been extensively verified with
industrial data. To be able to identify the fuzzy relations, sufficient data about the behavior
is needed, which can be generated by using the EPM as a simulator. Since the hybrid model
describes the internal behavior of the digester, the data needs to be available in the form of
”state profiles”, that represent the states as a function of the location in the reactor.

This data can be obtained by performing several simulation ”experiments” under different
operating conditions. The ”measurements” of the state profiles can then be used as identifi-
cation data. Since the fuzzy relations are static, no dynamic data is required. This means that
a limited number of experiments is sufficient; only steady state measurements of the process
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Hybrid model properties

φf

Tlh 1.76 2.0 2.34 2.6 2.94 3.2
420 ID1 ID4 ID7
430 VAL1 VAL3 VAL5
438 ID2 ID5 ID8
445 VAL2 VAL4 VAL6
450 ID3 ID6 ID9
460 VAL7 VAL8

Table 5.6: Identification and validation run settings

operated under different conditions need to be obtained. Measurements for identification as
well as for validation need to be available.

The different steady state profiles can be obtained by manipulating process inputs. During
simulation of the model, the assumption is made that the wood flow rate and composition
do not change. This reduces the number of experiments that have to be set up while the
hybrid model requirements are still met. The main process inputs that can be used to control
the Kappa numberκ# (lower heater temperature and free liquor flow rate) will be used to
acquire the data. It is also possible to manipulate the filtrate flow rate, but this only affects
the process behavior in the last part of the reactor, which results in a marginal contribution.

To compare results after identification, the hybrid model has to be simulated under the same
conditions as the EPM. Since in the hybrid model the upper heater and lower heater are
lumped, the simulation conditions of the hybrid model are based on the heat supplyQh

instead of heater temperatureTh. The total heat supply can be determined by calculating the
heat supply of the lower and upper heater in the EPM, using equation C.29 and the lower and
upper heater temperatures.

The hybrid model is being built based on model reduction of the EPM. This means that
the EPM generates the required identification data. To acquire sufficient information, the
lower heater temperature or energy supply and the liquor flow rate can be varied within the
validity range of the EPM. However, to facilitate investigation of extrapolation behavior with
physically meaningful experiments, the range of variation during identification should be
limited. Therefore, the lower heater temperature and free liquor flow rate are varied between
approximately +/- 10 % of their normal operating values (appendix C). This results in 9
different ”identification runs” ID1 to ID9. In addition, 8 ”validation runs” VAL1 to VAL8 are
designed. An overview is given in table 5.6.

5.5.3 Subprocess behavior estimation

To identify the fuzzy models forRr,1, Rr,2, Rr,3 andDcr, input-output data is required.
The inputs can be obtained from the EPM, the outputs cannot. In the hybrid model, species
(e, 1) and(e, 3) are lumped to form species(r, 4). Species(e, 1) and(e, 3) are both inputs
to the EPM kinetic equations. However, since the kinetics are nonlinear, they are no longer
valid for species(r, 4). This means that the outputs of the fuzzy models,Rr,1, Rr,2 andRr,3,
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cannot be readily obtained from the EPM. The outputs are therefore derived from observed
behavior by estimation. Since the lumping affects the behavior of the diffusion term in the
model, the diffusion coefficient is also estimated.

The reaction rates and diffusion coefficient can be estimated with the help of the mass bal-
ances of species(r, 1) to (r, 3) and(l, 1) of the hybrid model (equations D.1 and D.3) and
the steady state profiles from the identification experiments. Because these profiles describe
a steady state, the state equations reduce to ODE’s. This facilitates the use of PI-estimators
(section 4.3.2). The system is mathematically equivalent to a batch process; as in a batch
process the conditions vary with time, the conditions in the digester vary with the location in
the reactor. The profiles can be interpreted as a dynamic response with respect to the location
in the reactor.

Four PI-estimators were designed. Since detailed information on the behavior of the EPM
is available (all state variables can be ”measured”), the model partsf of the PI-estimators
(as shown in figure 4.6) are kept simple. Consider the estimation of reaction rateRr,1. The
estimates can be derived from the steady state mass balance of speciesρr,1:

0 = − φr

S(1 − η)
∂ρr,1

∂z
+ Rr,1 (5.7)

which can be rewritten to
∂ρr,1

∂z
=

S(1 − η)
φr

Rr,1 (5.8)

Incorporating this equation in a PI-estimator structure, an ”estimated profile” for reaction rate
Rr,1 can be obtained. The model equations for the PI-estimators ofRr,2 andRr,3 are similar.
For the estimation ofDcr, the PI-estimator model equation becomes:

∂ρl,i

∂z
=

Sη

φl
Dcl(

1
ε
ρr,4 − ρl,1) (5.9)

Substituting

Dcl = Dcr
1 − η

η
(5.10)

results in
∂ρl,i

∂z
=

S(1 − η)
φl

Dcr(
1
ε
ρr,4 − ρl,1) (5.11)

In this equation,ρr,4 is treated as an input.

The PI-estimators were tuned manually by comparing the concentration profiles with the
reference values from the EPM. During setup, it was not possible to find appropriate tuning
parameters that yielded acceptable estimate profiles for the complete digester. A single PI-
estimator cannot cope sufficiently with the change in EPM behavior in the different sections.
Therefore, PI-estimators for each of the four sections of the hybrid model were designed.

While designing the PI-estimators forDcr in the four sections, it was observed that the esti-
mators in sections I, III and IV provided little useful information. In section I, both tempera-
tureTr and estimatedDcr do not change much. In sections III and IV, no acceptable tuning
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Hybrid model properties

Estimator Controlled Other K τI

variable variables (input) I II III IV I II III IV
Rr,1 ρr,1 φr 0.2 0.25 0.25 0.35 2 2 0.4 0.8
Rr,2 ρr,2 φr 0.15 0.2 0.2 0.4 1 0.5 0.3 10
Rr,3 ρr,3 φr 0.2 0.2 0.2 0.3 5 1 0.3 0.8
Dcr ρl,1 φl, ρr,4, ε - -0.045 - - - 5 - -

Table 5.7: PI-estimator structures and settings

parameters could be determined. To obtain small errors, the estimators had to be tuned ag-
gressively. Due to the limited number of measurements that were available for the estimators
of the smaller sections III and IV, overshoot and oscillation was observed. Therefore, only a
PI-estimator forDcr in section II was used.

The PI-estimator settings were used for all identification runs (ID1 to ID9). Table 5.7 gives
an overview of the PI-estimator structures and tuning parametersK andτI .

The estimates of the reaction rates and the corresponding species are shown in figure 5.10.
Only the results of run ID5 (the standard operating conditions) are shown; the results of the
other runs are similar. The estimates are of good quality. The errors in the estimatesρr,1 to
ρr,3 andρl,1 are small. The estimates of the reaction rates are negative because they describe
consumption.

In the estimates ofDcr, a spike occurs aroundz = 8 m. This is caused by a sudden increase
in the estimation error ofρl,1 (figure 5.10 (h)). The ”measured” profile shows a sudden
decrease inρl1,, which is the result of the lower heater. The lower heater outlet is located at
z = 8.67 m. The lower heater inlet is located atz = 10.2 m, where the concentration inρl,1

is lower. The recycle flow is mixed with the liquor phase at the lower heater outlet, resulting
in a decrease in concentration. The estimator cannot compensate for this ”bump”.

Consider the estimates of the reaction ratesRr,1 to Rr,3. For each of the reaction rates, PI-
estimator reinitialization can be observed. At the start of each section, the estimation error
is set to zero and the initial estimate of the reaction rate is set to the last estimate of the
previous section (for section I, initial estimates of the reaction rates are set to zero, based on
the assumption that no reaction takes place atz = 0 m). Because the PI-estimator lags 1 step
(due to the feedback structure), the estimates of the reaction rates remain constant for the first
time step (figures 5.10 (a), (c) and (e)).

The estimates of the reaction rates can be interpreted physically. In section I atz = 0 m, the
reaction rate is low. In the beginning of section I, the reactants are brought together and the
reaction starts slowly. By the end of section I, the rates have converged to a pseudo steady
state.

In section II, the reaction phase is heated up. The influence of the two heaters can clearly
be observed. The upper heater (atz = 5.5 m) causes an increase of the reaction, followed
by another increase caused by the lower heater (atz = 8.7 m). After that, the reaction rate
decreases because the reactants are being depleted. In sections III and IV, the reaction is
quenched and the reaction rate decreases to zero.

128



0 10 20 30

−0.3

−0.2

−0.1

0

0.1
I  II III IV 

z (m)

R
r,

1 (
kg

/(
m

3 m
in

))

0 10 20 30
0

10

20

30
I  II III IV 

z (m)

ρ r,
1 (

kg
/(

m
3 )

(a) (b)

0 10 20 30
−2.5

−2

−1.5

−1

−0.5

0

0.5
I  II III IV 

z (m)

R
r,

2 (
kg

/(
m

3 m
in

))

0 10 20 30
0

20

40

60

80

100

120
I  II III IV 

z (m)

ρ r,
2 (

kg
/(

m
3 )

(c) (d)

0 10 20 30
−2

−1.5

−1

−0.5

0

0.5
I  II III IV 

z (m)

R
r,

3 (
kg

/(
m

3 m
in

))

0 10 20 30
250

300

350

400

450
I  II III IV 

z (m)

ρ r,
3 (

kg
/m

3 )

(e) (f)

10 15 20
0

0.1

0.2

0.3

0.4 II

z (m)

D
cr

 (
m

in
−

1 )

10 15 20
30

40

50

60 II

z (m)

ρ l,1
 (

kg
/m

3 )

(g) (h)

Figure 5.10: PI-estimates run ID5. Solid line estimates, dots measurements
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Hybrid model properties

Fuzzy model Inputs γdr # data features k0 γcm # rules RMSE

Rr,1 ρr,1, ρr,4, Tr 2 179 10 0.7 4 0.024
Rr,2 ρr,2, ρr,4, Tr 1 333 10 0.7 6 0.14
Rr,3 ρr,3, ρr,4, Tr 5 198 10 0.7 6 0.12
Dcr Tr 1 36 5 0.2 2 0.026

Table 5.8: Fuzzy model identification settings and results

The influence of the lower heater results in some overshoot in reaction ratesRr,2 andRr,3.
From a physical point of view, more smooth behavior is expected. However, the overshoot
could not be reduced any further without compromising the estimates of the concentrations.
Therefore, the estimation results as presented in figure 5.10 were accepted.

The use of the nine identification runs resulted in a total of 450 estimates for the reaction
rates and 243 estimates for the diffusion coefficientDcr. The required input-output data for
the identification of the fuzzy models is now available.

5.5.4 Submodel identification

The four fuzzy models will be identified with GK-clustering in combination with cluster
merging. This way, a simple fuzzy model is derived from the input-output data without the
need to impose an initial model structure (section 4.4.1). The identification step consists of
preparation of the data sets, clustering in combination with cluster merging, premise part
construction by projection and consequent part construction using weighted least squares.

The first step is to reduce the data sets in such a way that the data features are distributed
evenly across the input space. Usually, the data reduction thresholdγdr (see example 4.5) is
related to the maximum distance of two neighboring features. However, in this case, the data
sets for the four fuzzy models consist of 9 trajectories, in which the data features have a small
mutual distance, but between which the distance is relatively large. Care has to be taken that
the threshold is not set at a value which results in loss of information. The thresholds were
set manually and are shown in table 5.8.

For clustering, the following parameters have to be set: the initial number of clustersk0

and the merging thresholdγcm. For each model, several values ofγcm were investigated.
The values that were selected yielded relatively simple models with acceptable performance.
Settings as well as clustering results are also shown in table 5.8.

The model for the reaction rates are shown in appendix D. Figure 5.11 (a), (c) and (e) show
the performance of the reaction rates for run ID5. These results were generated by supplying
the ”measured” profiles of the input variablesρr,i, ρr,4 andTr. In addition, figure 5.11 (b),(d)
and (f) show parity plots with respect of all identification data, which indicate the quality of
the fit.

All fuzzy models perform well. The overall behavior is similar to that of the estimates. The
parity plots indicate that modeling errors are larger when the reaction rate is larger (more
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Figure 5.11: Fuzzy model results reaction rates (ID5) and parity plots (ID1-ID9). In (a), (c) and (e),
dots indicate estimates, solid line fuzzy model.
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Figure 5.12: Fuzzy model results diffusion (a) and reduced data set (b)

negative). When the fuzzy models are incorporated in the hybrid model, these errors are
integrated. Whether this effect plays a major role in the performance of the hybrid model,
will become apparent during submodel integration.

Figure 5.12 shows the input-output identification data of runs ID1 to ID9 for the fuzzy model
for Dcr. In figure 5.12 (a), the ”spikes” in the estimates are removed manually, resulting
in limited information betweenTr = 405 K andTr = 415 K. Figure 5.12 (b) shows the
reduced data set. The figure shows that the diffusion coefficientDcr is not a strict function
of the reaction phase temperatureTr but that there is some other influence. The results are
caused by the nonlinear effect that the lumping of species(f, 1) and (f, 3) has. This can
be explained by solving the mass balances for(f, 1) and(f, 3) analytically (with neglection
of the bulk flow and assuming steady state) and lumping the analytical solutions to form an
equation that describes species(l, 1). If this result is compared with the analytical solution
of the mass balance that is imposed on(l, 1) (equation 5.11), it can be seen that the structures
are different. The PI-estimator derivesDcr from the behavior that is described by the lumped
analytical solution by using an ”incorrect” imposed model structure, which results in the
estimates forDcr as shown in figure 5.12.

The problem can be solved by lumping the diffusion term into a relation that describes dif-
fusion as a function ofρl1, ρr4 and Tr. However, this results in a loss of transparency.
Despite the mediocre quality of the estimates, the proposed structure to describe diffusion is
maintained. Consequently, diffusion can still be interpreted as described by a driving force
(ρl,i − (1/ε)ρr,i+3) and a diffusion coefficient, which is temperature dependent. The re-
duced data set is used to build a fuzzy model forDcr. Results are shown in figure 5.13. The
influence of errors in the fuzzy model on hybrid model results will be investigated during
submodel integration.
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Figure 5.13: Fuzzy model results for Dcr , run ID5 (a) and Dcr as a function of Tc

5.5.5 Submodel integration

The fuzzy submodels for reaction ratesRr,1, Rr,2, Rr,3 andDcr were combined with the
physical framework to form the hybrid model. Figure 5.14 shows the Kappa number profile
for ID5, table 5.9 shows key variable errors atz = 32 m, the reactor outlet.

The hybrid model shows the same qualitative behavior for the Kappa number as the EPM.
However, there is a discrepancy between the two profiles. Table 5.9 shows the model errors
at the reactor outlet; there are significant errors in the hybrid model (εκ,hm andεγ,hm denote
absolute errors,̄εκ,hm andε̄γ,hm denote relative errors).

The hybrid model errors are caused by:

• Model reduction. The simplifications result in slightly different behavior.

• PI-estimates. Errors in the estimates of the reaction rates and the diffusion coefficient
manifest themselves through the fuzzy models in the hybrid model results.
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Figure 5.14: Initial κ# profile hybrid model run ID5
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Hybrid model properties

Error ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9
εκ,hm -2.60 -3.03 3.88 -5.22 -3.85 2.68 -5.78 -3.23 5.57
ε̄κ,hm 0.03 0.07 0.15 0.07 0.12 0.17 0.08 0.11 0.43
εγ,hm -0.02 -0.03 -0.03 -0.02 -0.03 -0.03 -0.01 -0.02 -0.02
ε̄γ,hm 0.03 0.05 0.06 0.03 0.05 0.07 0.02 0.03 0.04

Table 5.9: Hybrid model errors before submodel integration

• Identification errors. The error of the fuzzy models with respect to the estimates also
is present in the hybrid model results.

• Error integration. The error increases towards the end of the reactor.

The fuzzy models will have to be adjusted in order to improve hybrid model performance.
This involves optimization of the fuzzy model parameters. To gain insight in the influence of
the fuzzy models on the errors, the sensitivity ofRr,1, Rr,2, Rr,3 andDcr with respect to the
Kappa number and the yield is calculated.

Sensitivity analysis

The sensitivity of the kappa number and the yield with respect to changes in the reaction
rates and diffusion coefficient was determined by introducing fuzzy model weightswm in
the hybrid model. The model weights can be interpreted as multipliers of the reaction rates
and the diffusion coefficient. The model is evaluated for different values of these multipliers.
Determining the change in the Kappa number and the yield with respect to changes in the
multipliers give the sensitivity:

Sκ
Rr,i

=

∣∣∣∣∣ ∆κ#/κ#

∆w
Rr,i
m /w

Rr,i
m

∣∣∣∣∣ for i = 1, . . . , 3 (5.12)

Sκ
Dcr

=
∣∣∣∣ ∆κ#/κ#
∆wDcr

m /wDcr
m

∣∣∣∣ (5.13)

Sγ
Rr,i

=

∣∣∣∣∣ ∆γ#/γ#

∆w
Rr,i
m /w

Rr,i
m

∣∣∣∣∣ for i = 1, . . . , 3 (5.14)

Sγ
Rr,i

=
∣∣∣∣ ∆γ#/γ#
∆wDcr

m /wDcr
m

∣∣∣∣ (5.15)

The hybrid model was simulated for the conditions of run ID5; the assumption is made
that sensitivity does not change much within the identification domain. Each multiplier was
changed from 1.00 to 1.05. Results are shown in table 5.10.

The sensitivity of the yieldγ is the highest for changes inRr,3. The sensitivity for the other
parameters is lower than forRr,3, but approximately in the same order of magnitude. The
sensitivity of the Kappa numberκ# is the highest for changes inRr,2, while the sensitivity
for changes in the other parameters is relatively low.
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SRr,1 SRr,2 SRr,3 SDcr

κ# 0.19 1.50 0.26 0.03
γ 0.01 0.07 0.14 0.05

Table 5.10: Sensitivities hybrid model

Parameter optimization

The most straightforward approach is to improveγ by optimizingRr,3 andκ# by op-
timizing Rr,2. This means that two optimizations are performed sequentially. If this yields
unacceptable results, other reaction rates or the diffusion coefficient can be incorporated in
the optimization procedure.

The reaction ratesRr,2 andRr,3 influence bothκ# andγ. The sensitivitySκ
Rr,2

is much
higher thanSγ

Rr,2
, while Sκ

Rr,3
and Sγ

Rr,3
are in the same order of magnitude. Because

Sκ
Rr,2

> Sγ
Rr,2

, the optimization ofRr,2 will not affectγ as much. Therefore,Rr,2 should be
optimized afterRr,3 is optimized.

The two fuzzy models contain 192 parameters. To keep the optimization simple, the number
of parameters that is optimized should be kept as low as possible. This can be accomplished
by optimizing fuzzy model weights or rule weights instead of the individual model parame-
ters. To provide sufficient flexibility to deal with nonlinearity, the rule weightsw

Rr,ij
j of the

two models are optimized. This results in the optimization of 6 parameters in each of the two
fuzzy models.

The goal function for the optimization ofRr,3 is a standard quadratic error criterion. Instead
of incorporating the error inγ, the error inρr,3 is used; if the states of the model are described
well, the model outputs are described well. In addition, interpretation of the behavior of the
states is improved. The goal function is given by:

J =
1
2

9∑
j=1

n∑
i=1

(ρr,3,epm,i,IDj − ρr,3,hm,i,IDj)2 (5.16)

in which ρr,3,epm,i,IDj denotes theith value in the EPM concentration profile ofρr,3 for
experimentIDj andρr,3,hm,i,IDj denotes theith value in the hybrid model concentration
profile of ρr,3 for experimentIDj. n is the number of features per experiment. The goal
function for the optimization ofRr,2 is similar to equation 5.16:

J =
1
2

9∑
j=1

n∑
i=1

(ρr,2,epm,i,IDj − ρr,2,hm,i,IDj)2 (5.17)

Bounds were imposed on the rule weights:

0 ≤ w
Rr,i

j ≤ 2 (5.18)

in which i denotes the species andj denotes the rule number.
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Hybrid model properties

Rule #: 1 2 3 4 5 6
Rr,2 0.73 0.93 0.47 1.19 1.14 1.70
Rr,3 0.99 1.38 1.04 1.95 1.25 1.12

Table 5.11: Optimized rule weights

A standard Nelder-Mead simplex algorithm is used to perform the optimization. A direct
search method omits the need to calculate gradient information, which is cumbersome for the
hybrid model. Although the algorithm may require many iterations and can get stuck in local
optima, it can be used as long as performance requirements are met.

Results

The optimized weights are shown in table 5.11. Figure 5.15 shows the results before and
after the optimization step, table 5.12 shows the errors after optimization.

Figure 5.15 shows that the hybrid model concentration profiles follow the measurements more
closely after optimization. The error in the yieldγ is negligible (table 5.12). The overall error
in the Kappa numberκ# at the reactor outlet has been decreased, although for some runs,
the error is larger (ID2 and ID5).

The optimization results show that the hybrid model behavior matches the static behavior of
the EPM for runs ID1 to ID9 closely. Table 5.13 shows that the hybrid model is consistent
with respect to the mass balances within 3 %, the result of rounding errors. The liquor flow
at the reactor outlet is assumed to be zero; it is assumed that the amount of liquor phase that
leaves the reactor at the bottom is negligible.

5.6 Hybrid model analysis

The next step is to analyze the hybrid model in detail to determine whether the quality
requirements are met. The hybrid model of the digester will be analyzed with respect to static
performance, dynamic performance, complexity, interpretability and process independence.

Error ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9
εκ,hm 2.47 -3.86 -0.28 -0.82 -4.87 -1.09 -1.00 -2.61 2.23
ε̄κ,hm 0.03 0.10 0.01 0.01 0.15 0.07 0.01 0.09 0.17
εγ,hm 0.00 -0.01 -0.01 0.00 -0.01 -0.01 0.01 0.00 0.00
ε̄γ,hm 0.01 0.03 0.02 0.01 0.02 0.02 0.01 0.01 0.00

Table 5.12: Hybrid model errors after submodel integration
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Figure 5.15: Simulation results run ID5 before (a,c,e) and after (b,d,f) optimization. Solid line hybrid
model, dots measurements
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Hybrid model properties

Stream Mass flow in (kg/min) Mass flow out (kg/min)
Reaction 748.5 564.0
Liquor 494.4 -
Extraction - 879.4
Filtrate 154.6 -
Total 1398 1443

Table 5.13: Overall mass balance hybrid model

5.6.1 Static performance

The static performance of the hybrid model will be analyzed by evaluating the results of
the hybrid model for runs VAL1 to VAL8 (table 5.6) and by investigating the static extrapo-
lation behavior.

Table 5.14 shows the errors at the reactor outlet for the validation runs. In figure 5.16, parity
plots forκ# andγ are given. The overall static performance is good. The errors are slightly
larger than the errors for the identification runs, but still within acceptable limits. Similar to
the identification runs, the error inκ# is larger than the error inγ. The relative error inκ#
for VAL7 is large, while the absolute error is in the same order of magnitude as the errors in
VAL1-VAL4. The relative error is large since theκ# at the reactor outlet is relatively low for
VAL7 (figure 5.17).

The qualitative behavior is in accordance with the measurements. Figure 5.17 illustrates
this for VAL1 (interpolation) and VAL7 (extrapolation). Details, however, are different. For
example, in VAL7,κ# of the hybrid model starts to decrease at a lowerz than theκ# of
the EPM, but in section II, the reaction rate in the hybrid model is lower than in the EPM,
resulting in a higherκ#.

Because the error inγ is similar to the error during the identification experiments (tables 5.12
and 5.14), it can be concluded that the fuzzy model forRr,3 performs well for the validation
runs. Since the fuzzy model forRr,3 performs well, the larger error inκ# is caused by the
error inRr,2, for which the Kappa number has the highest sensitivity. The influence of the
other fuzzy models on the Kappa number is much smaller. As a result, the errors caused by
these fuzzy models are much smaller than the error caused by the fuzzy model forRr,2.

To investigate the interpolation and extrapolation properties in more detail, the hybrid model
performance as a function ofQh (which is equivalent to the energy supply of the lower and
upper heater, that can be derived fromTuh andTlh in the EPM) andφl (equivalent to the free
liquor flow φf in the EPM) was calculated.

Error VAL1 VAL2 VAL3 VAL4 VAL5 VAL6 VAL7 VAL8
εκ,hm 7.55 -4.37 -5.81 -2.00 -6.04 0.81 -6.62 -1.16
ε̄κ,hm 0.14 0.17 0.12 0.10 0.12 0.04 0.55 0.18
εγ,hm 0.03 -0.02 0.00 -0.01 0.00 0.00 0.01 0.01
ε̄γ,hm 0.05 0.04 0.00 0.02 0.01 0.01 0.01 0.02

Table 5.14: Hybrid model errors validation runs
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Figure 5.16: Parity plots for κ# (a) and γ (b). Solid dots ID runs, open dots VAL runs
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Figure 5.17: Simulation results κ# run VAL1 (a) and VAL7 (b). Solid line hybrid model, dots mea-
surements
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Figure 5.18: Static extrapolation results for κ# (a) and γ (b). Solid line hybrid model, dots EPM.
Vertical lines indicate identification domain

Figure5.18 (a) shows the Kappa number at the reactor outlet as a function of the heat input
Q, which can be interpreted as a general production curve. As temperature rises, the pro-
duction increases exponentially. At higher temperatures, exhaustion is observed, resulting in
depletion of the reactants.

The liquor flowφl was kept constant at2.34 m3/min. Q was varied from 0 (heaters switched
off) to 25 % of the identification range beyond the maximum identification value. Within the
identification range (350000 ≤ Q ≤ 860000), the hybrid model error is relatively constant
and small. ForQ > 860000 kJ/min, the Kappa number of the EPM converges to zero due
to exhaustion of componentsρr,1 andρr,2. Since the mass balances of the hybrid model are
based on first principles, the hybrid model Kappa number will also converge to zero.

At low Q, the production as calculated by the hybrid model becomes constant. Under these
conditions, only rule 2 is active in the fuzzy model forRr,2. Although the reaction conditions
differ slightly due to the changingQ, the overall reaction rate does not change much. The
result is thatκ# remains constant.
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Figure 5.19: Static extrapolation results for κ# (a) and γ (b). Solid line hybrid model, dots EPM.
Vertical lines indicate identification domain
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Figure5.18 (b) shows the yield as a function ofQ. The results are similar to figure5.18 (a).
However, at highQ, the yield of the EPM converges to a constant value, while the yield
of the hybrid model continues to decrease. In the EPM, the conversion is limited by ”inert
concentrations”; a fraction of speciess, 3 ands, 4 does not react, which means that the yield
has a minimum value that is greater than zero. This limitation is not accounted for in the
hybrid model, as a result of which the yield converges to zero.

To investigate extrapolation performance resulting from variations in the liquor flow rate,Qh

was kept constant at627000 kJ/min (the value for ID5). The flow rateφl was varied from
1.46 m3/min to 3.23 m3/min. The results for the Kappa number and the yield are shown
in figure 5.19.

Although the concentration of the liquor in the reaction phase (ρr,4) rises as a result from
the increase inφl, the reaction phase temperature decreases, since the heat supply of the
heater remains constant. The net result is that conversion decreases with higher flowrates,
as illustrated in figure 5.19. At low flow rates,ρr,4 becomes the limiting factor, which also
results in a decrease in conversion.

Changes in the liquor flow rate do not affect the production as much as changes in the heat
supply of the heater. As a result, similar performance is observed throughout the extrapolation
range. Forκ#, the error remains constant at approximately the same value as the error
for ID5. The error is mainly caused by the error inρr,2, which in turn is the result of the
performance of the fuzzy model forRr,2. The performance of the yield is good over the
entire extrapolation domain, indicating good performance of the fuzzy model forRr,3.

5.6.2 Dynamic performance

Since the dynamic structure of the hybrid model is based on first principles, the model
is expected to perform well dynamically. This will be analyzed using step responses of step
changes in the heat supply of the heaterQh and the liquor flow rateφl. In addition, frequency
extrapolation will be investigated.

Figure 5.20 shows the results for a step change in the lower heater heat supply att = 0 min.
The change inQlh of the EPM andQh of the hybrid model was identical. The step was
performed for the operating conditions of run ID5. The steady state offset between the EPM
and the hybrid model can clearly be seen.

Table 5.15 shows the amplitudes∆κ# and∆γ for the step change. Values for both a positive
and a negative step change are given. Figure 5.20 (a) shows the response of the Kappa number
at the reactor outlet for a change inQh. The change in Kappa number is approximately
the same for both models. This means that under these conditions, the steady state offset
remains constant. The dynamic behavior of both models is identical; both show a second
order response and similar dead times. Figure 5.20 (b) shows the response of the yield. The
influence of the step on the yield is very small, but performance of the hybrid model is similar
to the performance of the EPM.
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Figure 5.20: Hybrid model step response results for κ# (a) and γ (b) for positive and negative step
change in Q. Dots EPM, lines hybrid model

Figure 5.21 shows the response of the Kappa number and the yield for a step change in the free
liquor flow φl. The gain of both models with respect to changes inφl is different. This can
be explained as follows. A step change inφl results in a change of the liquor concentration
(r, 4). It was found there is not much difference between the concentrations of species(r, 4)
in the EPM and the hybrid model. This indicates that diffusion is described in a similar
fashion by both models and that the difference in gain is the result of different sensitivities of
the reaction rates to changes in species(r, 4).

In addition, the figure shows that two effects play a role. Consider the response of the hybrid
model. If the flow rate is increased, then the concentration of the liquor reactants in the
reaction phase will increase over the entire reactor as a result from the increase in the driving
force of the diffusion. This results in a decrease of the Kappa number. However, since the heat
supply of the heaters is constant, the temperature will drop, resulting in an overall increase
in the Kappa number. These effects have the same influence on the yield, but since the yield
does not change much, the influence of the increase in concentration can be neglected.

The first effect is not observed in the EPM. Since the volume of the free liquor phase in the
EPM is not constant due to compaction, the effect of a step change in the free liquor flow
rate is different. The second effect has a similar influence as it has on the hybrid model. The
overall Kappa number is increased as a result form the decrease in reaction temperature.

The model ordersO, time constantsτ and dead timesθ indicate that dynamic performance
of the hybrid model is good (see table 5.15). The dead times were derived from the step
responses, while the orders and time constants were determined using the Bode diagrams,
given in appendix D. The influence of the simplifications is observed in the hybrid model

Model Input O[input],κ O[input],γ τ[input],κ τ[input],γ θ[input] ∆κ# (−) ∆γ (−)
(min (min (min)

EPM Qlh 2.3 2.3 42 43 87 -5.51, 6.17 -0.022, 0.022
φf 2.9 3.3 35 35 113 4.71, -4.06 0.019, -0.020

Hybrid Qlh 1.8 1.9 40 45 84 -5.77, 6.40 -0.018, 0.018
model φf 2.4 2.7 34 34 109 4.23, -3.69 0.014, -0.013

Table 5.15: Frequency response analysis results for hybrid model
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Figure 5.21: Hybrid model step response results for κ# (a) and γ (b) for positive and negative step
change in φl. Dots EPM, lines hybrid model

response to a change in the flow rate, but the overall response is in accordance with the EPM.
The time constants and dead times of both models are approximately the same. There are
some differences with respect to the orders of the models. The order of the hybrid model
is slightly lower than the order of the EPM, since fewer PDE’s are present. In addition,
numerical inaccuracies during the construction of the Bode plots influence the results; the
frequency range limits accurate determination of the order. However, the overall performance
indicates that the dynamic behavior of both models is similar.

The analysis of the dynamic behavior of the hybrid model can also be viewed in the context
of frequency extrapolation. Frequency extrapolation occurs when the model is simulated at
different frequencies than the frequencies that were used during identification. In the case of
the hybrid model, the identification was performed using static data. Within this context, all
dynamic experiments presented in this section can be interpreted as frequency extrapolation
experiments. From this, it can be concluded that the hybrid model possesses good frequency
extrapolation properties.

5.6.3 Complexity

The flowsheet of the hybrid model contains four sections that describe the most important
functional zones of the digester. The upper and lower heater are lumped and the heater
recycle flows are omitted. The quench recirculation is also omitted; in the EPM, quench
recirculation is set to zero (Wisnewskiet al., 1997). The flowsheet is more straightforward
than the flowsheet of the EPM, while it is still possible to distinguish the different zones in
the digester.

The DFD of the section model (appendix D) clearly shows the reduced complexity of the
relations between the modeled phenomena. In comparison to the EPM, the entrapped phase
mass balance is not present, as is the bulk flow. Although the DFD is simpler, it does not
show the relations between the different components. The relation is only illustrated by the
model equations, which makes interpretation more cumbersome.
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The complexity of the model equations is similar to the EPM. Although less states are mod-
eled, the structure of the mass and energy balances is identical; in both models, the balances
consist of partial differential equations, describing the states as a function of time and place.
The connection between the balances in both models is also similar. The main difference is
that the hybrid model contains fuzzy submodels.

The fuzzy submodel for the diffusion coefficient is a very simple two rule SISO model. The
three fuzzy submodels for the reaction rates are more complex. The MISO models each are a
collection of local linear models. The activation of these models is based on the values of the
input variables. Although the structure of these submodels is clear, it is difficult to determine
which of the local models is most important, or how the individual local models determine
the behavior of the reaction rates.

The complexity of the fuzzy models is mainly determined by the number of rules and the rule
base. The clustering algorithm in combination with structure optimization provides a way to
minimize fuzzy model complexity, which yielded acceptable results. Other approaches for
evaluating fuzzy model complexity exist and more information can for example be found in
Setnes (1999).

5.6.4 Interpretability

The static behavior of the model can be explained physically by using the model flow-
sheet and section model DFD. For example, the interpretation of the temperature profile was
based on the model flowsheet in order to distinguish the different functional zones. On a more
detailed level, the development of the concentration profiles can be explained by using the
section model DFD. A decrease in temperature results in a decrease in reaction, as a result of
which the Kappa number rises.

The interpretation that is given to the simulation results or the model structure is based on the
process hypotheses that were used to build the model. This result in a level of interpretation
which is limited to the information that these hypotheses provide. In the case of the hybrid
models, the level of interpretation is limited to relations in terms of accumulation, convection,
reaction or diffusion. Physical interpretation on a more detailed level is more difficult and
even impossible for the fuzzy submodels, which give an input-output mapping.

The fuzzy models do, however, provide information about characteristic operating regimes
that can be interpreted; the reaction rate is high for high concentrations and high tempera-
ture. In addition, the distribution of the membership functions gives information about the
nonlinearity of the model output with respect to an input. For bothRr,2 andRr,3, a char-
acteristic transition can be observed at aroundT = 425 K. Such a transition can also be
observed forRr,1, but is less clear. The nonlinearity with respect toρr,4 is comparable for
all three reaction rate models. The membership functions ofρr,4 in the models forRr,2 and
Rr,3 are similar. The model forRr,1 shows the same trends;ρr,4 = mf4 andρr,4 = mf4
in the model forRr,1 corresponds withρr,4 = mf3 andρr,4 = mf5 in the model forRr,2,
respectively. The nonlinearity with respect to the wood species differs for the three models,
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which indicates different kinetic characteristics.

To explain the differences in the behavior of the fuzzy models in more detail, the consequent
parameters should be included in the analysis. However, the analysis of the observed be-
havior (section 5.5.3) and the premise part membership functions provides some a posteriori
information about the reaction kinetics. This is partly possible due to the transparent structure
of fuzzy models.

The data used to construct the fuzzy relations for the reaction rates and diffusion coefficient
is derived form the framework that was proposed a priori. The data was not obtained from
measurements or lab analysis. The fuzzy relations are specifically designed for the physical
framework that is presented. Therefore, the reaction rates that are calculated by the fuzzy
models should be interpreted as ameasurefor the reaction rate, appropriate for the chosen
model structure. This is also true for the diffusion coefficient.

The level of physical interpretation of the hybrid model is similar to the EPM. In the EPM,
the level of interpretation is also limited by the physical framework. Interpretation on a more
detailed level involves analysis of empirical relations. The EPM, however, has a more detailed
model structure, which means that it provides more information about the unit operation and
the relation between specific wood and liquor components.

5.6.5 Process independence

The level process independence is based on the sources of information that are used. In
the case of the hybrid model, the main source of information was the EPM. This means that
in general, the hybrid model can be used for the same applications as the EPM, as long as the
model can provide the required information. Some comments, however, need to be made.

The EPM can be viewed upon as the ”process” for which the hybrid model was built. The
hybrid model is completely based on this ”process”, which makes it process dependent. It
has the same possibilities and limitations as the EPM has. In addition, with respect to static
performance, it is only valid for operating conditions that were used during identification.
If the model is to be used for other conditions, for example other wood species, it can be
adjusted by re-identifying the fuzzy equations. New identification data is then required. The
rest of the model can remain unchanged.

The application possibilities of the hybrid model on different continuous pulp digester instal-
lations are the same as the possibilities the EPM has. The model may need adjustment of the
fuzzy relations or other model parameters to provide acceptable performance. However, due
to the first principles information, the main physical phenomena that play a role are accounted
for, which means that the adjustments will be minor.

Similar to the EPM, the hybrid model has limited process independence with respect to pro-
cess design. It provides little information about design parameters, except for reactor height
and width. In addition, the need for parameter adjustment in order to use the model for differ-
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ent digester installations makes it more suited for studying process operation than for process
design.

5.6.6 Remarks

The hybrid model describes the key variables of the pulp digester acceptably (require-
ments 1 and 2). The maximum static error is around 5 units forκ# and around 0.01 forγ.
The dynamic characteristics of the hybrid model and its reference are similar, although the
detected order of the hybrid model was somewhat lower than the order of the EPM.

The description of the variables is based on a simplified interpretation of the process, which
results in a model that is transparent and a model structure which can be interpreted physically
(requirements 3 and 4). Although it provides less detailed information than the EPM, it is still
possible to explain the digester behavior in terms of convection, reaction and diffusion.

The differences in model structure between the EPM and the hybrid model manifest them-
selves in the states that are modeled and hence the observed order (requirement 5). The
lumping of some of the species is based on physical assumptions and results in differences in
the equation structure (such as for the reaction rates) or in the model structure (the connec-
tions between the modeled effects).

Since the fuzzy models describe static relationships, no dynamical data was needed during
identification. The dynamic characteristics are determined by the first principles framework.
This makes the modeling approach useful if limited amounts of dynamic data are available
and first principles provide sufficient information to design the model framework.

5.7 Fuzzy model problem definition and design

To determine hybrid model properties in relation to first principles models and fuzzy
models, a third, fuzzy model for the digester is developed. This model is completely black
box and represents one extreme of the model ”spectrum” (section 5.4.1). As with the hybrid
model, the EPM will serve as the reference. In order to be able to compare the fuzzy model
with the hybrid model, the input-output structure has to be similar. The fuzzy model should
describe the static as well as the dynamic behavior of the digester.

5.7.1 Model structure

To meet the model requirements, the fuzzy model will describe the key variables: the
Kappa numberκ# and the yieldγ at the reactor outlet. The most simple model structure is a
black box approach, in whichκ# andγ are described as a function of the inputs. This results
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in a model that does not provide information about concentration profiles, such as the EPM
and the hybrid model do. However, the purpose of the fuzzy model is to provide a black box
description of the digester behavior. This means that a description of the key variables based
on concentration information is not required and that the fuzzy model can describeκ# andγ
directly instead.

Similar to the hybrid model, the fuzzy model will describe the kappa number and the yield
for a fixed wood chip flow rate and one type of wood. The input variables that are required
are the heat inputQh and the free liquor flowφl. The model will consist of two Multiple
Input Single Output (MISO) models; one for each of the output variables.

The dynamics are incorporated by using an ARX structure. A second order structure will be
used (see section 5.3.1). In addition, the dead times with respect to the input variables needs
to be incorporated. This yields the following model structure:

κ#k = ffuzzy(κ#k−1, κ#k−2, Qh,k−θQ , φl,k−θφ
) (5.19)

γk = ffuzzy(γk−1, γk−2, Qh,k−θQ , φl,k−θφ
) (5.20)

in whichk denotes the time step andθQ andθl denote the dead times with respect toQh and
φl.

The fuzzy model will be of the Sugeno type. The MISO models can then be interpreted as a
collection of local linear ARX models.

5.7.2 Data acquisition

The identification data needs to represent the dynamic behavior of the pulp digester. To
accomplish this, identification and validation data sets have been designed based on ramped-
RMRI (Random Magnitude Random Interval) input signals. Such a signal consists of a series
of ramped steps of random magnitude with, spaced at random intervals.

To design the input signals, a magnitude domain, an interval domain and a ramp domain
need to be specified. The input signals are allowed to vary between the standard operating
conditions +/- 10 %, similar to the identification data of the hybrid model.

To generate the input signal forQh, the EPM was subjected to ramped-RMRI signals for both
the upper heater heat supplyQuh and the lower heater heat supplyQlh. The signal that is
used forQh during identification of the fuzzy model consists of the sum of these two signals.

The length of the interval between two steps,τis, is chosen at random using the following
rule of thumb:

1
4
τss < τis <

5
4
τss (5.21)

with
τss = θ + 5τ (5.22)
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Model θQ,[output] (min) θφ,[output] (min) k0 γcm # rules
κ# 87 113 6 0.7 3
γ 87 113 6 0.4 5

Table 5.16: Settings and structure results fuzzy model

whereτ is the first order time constant andθ is the dead time with respect to the input
signal. The ramp domain was arbitrarily set: the minimum duration was 2min, the maximum
duration was 200min. To acquire sufficient information, 25 different steps were performed,
resulting in a signal duration of approximately 8000min.

The EPM was simulated using the ramped-RMRI input signals. The resulting input-output
data sets for identification and validation are shown in appendix A.

5.7.3 Model identification

Both MISO models were identified using GK-clustering in combination with structure
optimization (section 4.4.1). Since the large values ofQh can give computational problems
while evaluating the membership functions, the signal was scaled by a factor of1e5. Settings
and fuzzy model structure results are shown in table 5.16. The fuzzy models are given in
appendix A.

Figure 5.22 shows the simulation results of a free run, in which the fuzzy model is simulated
in an autoregressive manner. For clarity, only some of the measurements are shown. The
performance of the fuzzy model is good for the kappa number as well as for the yield. Some
mismatch is observed during fast changes (for example aroundt = 7500 min. Overall, the
fuzzy model matches the identification data.

For all rules in the fuzzy MISO models for the Kappa number, the consequent parameters
corresponding withκ#k−1 have approximately the value of2. All consequent parameters
corresponding withκ#k−2 have the value of−1 (equation E.5). This indicates second order
behavior with approximately critical damping (Stephanopoulos, 1984).

5.7.4 Model validation

To validate the fuzzy model, a validation input-output data set was designed, similar to
the identification data set (see appendix A). Simulation results are shown in figure 5.22 (c)
and (d). Similar to the results for the identification data set, model mismatch occurs for fast
changes. In addition, at aroundt = 3700 min, large errors are observed forκ# andγ. Here,
a combination of input signals is encountered that was not present in the identification data
set, resulting in a large model error. This indicates poor extrapolation properties. Otherwise,
performance is similar to the performance for the identification data set.
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Figure 5.22: Fuzzy model simulation results identification data set (κ# (a) and γ (b)) and validation
data set (κ# (c) and γ (d)). Dots EPM, lines fuzzy model
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Figure 5.23: Static extrapolation results fuzzy model for κ# (a) and γ (b). Lines indicate identification
domain

5.8 Fuzzy model analysis

The fuzzy model will be analyzed with respect to the same aspects as the hybrid model:
static and dynamic performance, complexity, interpretability and process independence. This
makes comparison between the results possible. Of the quality aspects, the performance is
the most important.

5.8.1 Static performance

Figure 5.23 shows the performance of the fuzzy model as a function ofQh. The liquor
flow φl was kept constant at the standard operating value (ID5). For both the Kappa number
and the yield, the fuzzy model performs well within the identification domain. Outside this
domain, the extrapolation behavior is approximately linear. This is mainly caused by the
linear nature of the identification data with respect toQh in the identification domain. In
addition, if the model is extrapolated far enough, only one of the fuzzy rules will become
active. This means that an output variable is described by one linear ARX model. Forκ#,
this results in negative values for highQh. This shows the black box nature of the model; no
information is incorporated stating that the Kappa number cannot become negative.

Evaluating the static performance of the fuzzy model as a function ofφl (figure 5.24) gives
similar results. In the identification domain, the fuzzy model performs well. The fuzzy model
shows linear extrapolation behavior for changes in the liquor flow rate, mainly caused by the
linear nature of the data in the identification domain.

The results show that the static extrapolation performance of the fuzzy model for the yield
is comparable to the performance of the hybrid model. For the Kappa number, the hybrid
model performs slightly better, especially for high values ofQh.
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Figure 5.24: Static extrapolation results fuzzy model for κ# (a) and γ (b). Lines indicate identification
domain

5.8.2 Dynamic performance

The behavior of the fuzzy model for a step change inQh is different from the behavior
of the EPM (figure 5.25). The step was performed att = 0 min, while the initial conditions
were taken from experiment ID5. The steady state offset can be observed, while the model
gain is approximately the same as the gain of the EPM. The fuzzy model shows overshoot;
the response is underdamped.

The results for a step change in the liquor flowφl are given in figure 5.26. The step was
performed att = 0 min and the initial conditions were taken from ID5. For these conditions,
the steady state performance of the fuzzy MISO model for the yield is good (as was already
observed in figure 5.24). Table 5.17 shows the amplitudes∆κ# and∆γ. Values for a positive
and a negative step change, respectively, are given. The gains of the fuzzy model are smaller
than the gains of the EPM. The gains for step changes inφl are approximately equal for
positive an negative steps. This indicates that probably one of the rules is active under those
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Figure 5.25: Fuzzy model step response results for κ# (a) and γ (b) for positive and negative step
change in Qh. Dots EPM, lines fuzzy model
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Figure 5.26: Fuzzy model step response results for κ# (a) and γ (b) for positive and negative step
change in φl. Dots EPM, lines fuzzy model

conditions. As a result, the behavior is given by one of the local linear second order ARX
models.

Frequency response analysis shows that there are considerable differences between the sys-
tem ordersO and time constantsτ of EPM and the fuzzy model (table 5.17). The system
orders and time constants were determined using the Bode diagrams. During model design,
different model orders were investigated and the second order structure provided the best re-
sults. The simple model structure does not allow the orders that were observed from the EPM
to be described accurately. The fuzzy model imposes second order behavior for step changes
in bothQh andφl. However, in the EPM, the order of the behavior for a steps change inQlh

is different than forφf .

The fuzzy model describes the identification and validation data set sufficiently accurate.
However, frequency response analysis reveals that there are differences between the dynamic
characteristics of the EPM and the fuzzy model. These differences will be more apparent for
high frequencies. To improve the dynamic characteristics of the fuzzy model, more informa-
tion needs to be incorporated during model identification.

5.8.3 Complexity, interpretability and process independence

The structure of the fuzzy model is very simple. It consists of two MISO fuzzy ARX
models, each with four inputs. The models represent a collection of linear ARX models, that

Model Input O[input],κ O[input],γ τ[input],κ τ[input],γ θ[input] ∆κ# (−) ∆γ (−)
(min) (min) (min)

EPM Qlh 2.3 2.3 42 43 87 -5.51, 6.17 -0.022, 0.022
φf 2.9 3.3 35 35 113 4.71, -4.06 0.019, -0.020

Fuzzy Qh 2.1 2.0 52 58 87 -4.54, 4.98 -0.018, 0.022
model φl 2.0 2.0 50 50 113 3.70, -3.68 0.019, -0.020

Table 5.17: Frequency response analysis results fuzzy model
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Model Application
Quality aspect EPM Hybrid Fuzzy R&D Design Control
Static performance + + • •
Dynamic performance ++ 0 • •
Complexity 0 + ++ • • •
Interpretability ++ ++ − •
Process independence ++ 0 −− • •

Table 5.18: Comparison of model quality aspects, ranging from poor quality (−−) to good quality
(++)

describe the Kappa number and the yield as a function of the liquor flow and the heat supply
of the heater.

Obviously, the simple structure does not provide much information about the physical pro-
cesses that take place. Interpretation of the fuzzy model can only be done in terms of input-
output behavior. With the EPM and the hybrid model, the model structure provided much
information about the relation of physical phenomena. Since the fuzzy model maps the pro-
cess inputs directly to the process outputs, such a structure is not present.

Since the information that was used to build the fuzzy model only consisted of process data,
the model is very process dependent. As is common for these black box models, transporta-
bility is very limited. The performance analysis has already shown that there are differences
in the dynamic characteristics of the fuzzy model and the ”process” it was built for. As
a result, the fuzzy model is only suitable for application under the process conditions that
are represented by the identification data. It is easy to improve performance by providing
more information during model identification, for example by providing additional ”mea-
surements”. This, however, yields a new fuzzy model.

5.9 Model evaluation

In order to evaluate the properties of the hybrid model of the pulp digester, the modeling
results are summarized in table 5.18. This table shows how well each of the models performs
with respect to one of the five quality aspects. In addition, the relevance of a quality aspect
with respect to a general field of application is given (see also table 3.1).

The static performance of the hybrid and fuzzy model is comparable. Both describe the key
variables well within the identification domain; the fuzzy model performs slightly better for
the Kappa numberκ# than the hybrid model. The fuzzy model is directly fit toκ# and
has, because of the high number of parameters in comparison to the model equations, the
flexibility to describe the key variables well for steady state conditions. In addition, it is an
input output mapping, which means that error integration is not present, as is the case for the
hybrid model.

Dynamically, the hybrid model performs better than the fuzzy model. Time constants and
system orders match the EPM better than the fuzzy model. This is the result of the inclusion of
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first principles information for the dynamics. In the hybrid model, the key variables are based
on the concentrations of several species, which in turn are described by physical phenomena.
This way, the observed behavior is matched better. The MIMO reference system shows
different orders for changes in the inputs (a change in heat supplyQh results in a second
order response, a change in the liquor flow rate results in a third order response), which
is accounted for in the hybrid model. The simple structure of the fuzzy model is not able
to describe this behavior, although the performance with respect to the identification and
validation data is acceptable.

Obviously, the hybrid model is less complex than the EPM and more complex than the fuzzy
model. The result is that the hybrid model is less interpretable than the EPM, but provides
more information about the behavior than the fuzzy model does. Although the fuzzy model
is transparent, it provides no physical information about the internal behavior. The hybrid
model can be interpreted physically; the observed behavior can be explained with the model
structure, in which the relation between the modeled physical phenomena is represented.

The level of interpretability of both the EPM and the hybrid model is comparable. In both
models, the structure provides the most explanation of the behavior. The model equations
provide information about the relative importance of the modeled effects. In both models,
some of these equations are based on empirical data. The reaction rates in the EPM are based
on empirical data, while the reaction rates in the hybrid model are derived from observed
behavior. The level of interpretability is limited by the information that the specific equations
provide.

Since part of the identification of the hybrid and fuzzy models was data driven, the models are
more process dependent than the EPM. The fuzzy model is the most process dependent, since
the observed behavior was the only information that was provided during identification. The
hybrid model contains more information from other sources, such as first principles, which
results in better transportability. The use of other sources in addition to process data also
means that the data does not have to provide full information about the behavior. If the model
is used for other installations, the fuzzy submodels may need to be adjusted, but the structure
can remain unchanged.

The level of process dependence, although limited, makes the hybrid model less useful for
process or equipment design studies on a detailed level. This is also true for research and
development applications. A hybrid model can be very useful in studies that have the goal
to gain more insight in the behavior of processes, but should not be used for applications
that require models that are process independent. Regarding control applications, the hybrid
model can be useful for specific control design or optimization problems. For use of the
model in online control applications, the computational effort should be carefully evaluated.
The level of complexity determines the amount of information that a model provides, but
also the computational effort that is required to solve it, which may be limited in online
applications.

The evaluation indicates that hybrid models are suited for applications that require models
that are transparent, provide sufficient explanation of the process behavior and focus on a
specific installation. Whether this is in the field of R&D, design or control, entirely depends
on the application.
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5.10 Concluding remarks

The hybrid model of the continuous pulp digester meets the requirements that were set.
The behavior of unknown parts was derived from the observed behavior without making
a priori assumptions about the internal structure of the submodels. In addition, since the
fuzzy relations are static, there is no need for dynamic data during the identification of these
unknown parts.

The hybrid model contains more information than the complete fuzzy model. As a result,
it possesses better extrapolation properties. Although the error increases during extrapola-
tion, the hybrid model performs better than the fuzzy model. This was observed during the
evaluation of the static and dynamic performance.

The hybrid model was designed by incorporating the essential characteristics of the process,
given the model requirements. The number of states has been reduced from 19 to 13, while
the number of model sections has been reduced from 10 to 4. This yields a reduction in model
complexity of roughly 30 %. Still, the behavior of the hybrid model approaches the behavior
of the EPM closely. This is the result of the incorporation of the most important states that
describe the physical background of the key variables. It also provides an explanation for the
behavior of the model. If these states are not taken into account, it is not possible to combine
similar performance with a similar level of interpretation.

It is difficult to determine exactly for which applications hybrid models can be beneficial
and for which not. The enormous amount of literature about process modeling illustrates
that each modeler presents a different approach for each application. This chapter has tried
to provide more insight in general aspects of hybrid modeling and hybrid model properties.
This has been done by presenting a detailed discussion on the design of a hybrid model and by
comparing this model to two other models. It thus provides a basis for modelers to determine
whether hybrid modeling is a suitable approach for their modeling problem.

The next chapter will deal with the development of a hybrid model for an experimental pro-
cess unit setup. Although the hybrid model will be simpler than the model for the pulp
digester, it will investigate the performance of the modeling approach in an actual process
environment where limited amounts of data are available.
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The aim of this chapter is to build a hybrid model, based on experimental data. A suitable
process, of which measurements were available, is a batch distillation column. In addition,
dynamic modeling of this column has been applied to characterize column operation (Betlem
et al., 1998). It is therefore interesting to see if a hybrid model can be applied for such a
purpose.

Two different hybrid models will be developed for the column. The models differ with respect
to the dynamics that are incorporated. The goal of this exercise is to illustrate the development
of the minimal dynamic framework to obtain a useful dynamic description. The best model
will be used to determine the optimal production rate for a batch.

First, the application of the hybrid model will be discussed, from which the key variables and
model requirements will be derived. Then, the two different hybrid models will be designed
and compared. Finally, the best model will be applied in a simulation study to determine the
optimal production rate.

6.1 Problem definition

An important parameter during batch operation is the duration of a batch or thebatch
time. Often, the objective is to maximize the production within a certain amount of time, for a
given quality. A model that calculates the production as a function of the batch time provides
insight in this problem. Several approaches have been presented for the column under study,
ranging from rigorous to simplified reduced models. A simplified model has been used to
evaluate different basic control policies for a single distillation cut (which means distillation
of the feed stock without slop recycle) (Betlemet al., 1998):

• Constant reflux control

• Constant quality control

• Dynamic optimization according to Pontryagin’s maximum principle

The model that was used, does not take the start-up of the column into account. Start-up of
a batch requires about 20 to 30min, while a typical batch run for a single cut takes about 3
h. This means that start-up comprises a significant part of the batch run. A model that can
describe the start-up of the column would therefore be beneficial for optimization studies.

Measurements of several batch runs with constant quality control were available. These in-
volve the separation of ethanol and 1-propanol for different feed stocks and equal product
qualities. It is assumed that for this separation, constant quality control is equivalent to dy-
namic optimal control (Betlemet al., 1998). The data includes a description of the start-up of
the column. Based on this data,a hybrid model will be developed that describes the produc-
tion for one quality and for the constant quality control strategyduring start-up and normal
operation.
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The measurements limit the level of detail of the hybrid model. No internal data is available,
only input-output measurements. This means that the hybrid model will be similar to the
reduced models in Betlem (1997) that describe overall dynamic behavior.

6.2 Hybrid model design

The design phase will follow the approach presented in chapter 4. First, the model struc-
ture will be determined, after which the data is pre-processed and the parameters and fuzzy
models are identified. Subsequently, the fuzzy submodels will be integrated into the first
principles framework.

6.2.1 Basic modeling

Process description and information analysis

The experimental setup involves a batch distillation column with 21 bubble cap trays with
an internal diameter of 76mm and a Murphee vapor tray efficiency of about 53 %. The only
manipulated variable is the reflux fractionR∗. The heat supplyE is constant during a batch
run. The maximum exhaustion time is about 4h and the dominant time constant is about 25
min (Betlem, 2000). A simplified diagram of the column setup is given in figure 6.1.

Process data for five batch runs, concerning the separation of ethanol from 1-propanol, is
available. Since the data only provides information about the behavior under constant quality
control, the hybrid model can only be applied for simulations of batch runs using constant
quality control as the control strategy. The following measurements were made:

• Product qualityx0
n+1

• Reflux fractionR∗

• Vapor flow after condensationLV

Table 6.1 shows the feed stock properties, in whichMcol,0 is the amount of feed stock and
xcol,0 is the composition of the feed stock, given by the mole fraction of ethanol. The de-
sired product quality is given byx0

n+1,sp. To be able to validate the model, three runs are
designated as identification runs (ID), the other two are designated as validation runs (VAL).

Figure 6.2 illustrates the measurements of a batch run. A typical batch run can be described
as follows. When the column is heated, the vapor flow slowly builds up in the column before
reaching the condenser. This means that the during the first part of the start-up procedure, no
vapor flow is measured. The measurements start when the vapor flow reaches the condenser.
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Figure 6.1: Experimental batch distillation setup

At that moment, the temperature in the column is still rising and settles after about 0.5h.
This results in the vapor flow as shown in figure 6.2 (c).

At the same time, the qualityx0
n+1 is still rising. The quality is controlled with a PI controller

in combination with a Partial Least Squares (PLS) estimator. This estimator has limited
validity and the control loop only works properly if the deviation of the quality from the
setpoint is limited. Therefore, the quality controller is switched on if the deviation is less
than 0.002 from setpoint. Initially, the reflux fraction is set to 1. It takes about 15min before
the controller is switched on, as clearly can be seen in figure 6.2 (b).

When the control loop is active, the quality quickly reaches the desired value. There is some
”overshoot” present at aroundt = 0.5 h (figure 6.2 (a)). During warming up of the column,
the equilibria on the trays are slightly more in favor of the volatile component than when
the column is warmed up. This results in a slightly higher product quality. As the batch run
advances, the feed stock becomes exhausted. To maintain the desired product quality, the
reflux fraction is increased (figure 6.2 (b)).

Run no. Mcol,0(mol) xcol,0(−) x0
n+1,sp

ID1 201 0.403 0.986
ID2 194 0.499 0.986
ID3 200 0.603 0.986
VAL1 193 0.410 0.986
VAL2 187 0.490 0.986

Table 6.1: Initial conditions for batch distillation column
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Figure 6.2: Available measurements, run ID1

Process structure and basic equations

To describe the production dynamically, the overall dynamics of the column should be
included in the model. The short term dynamics are less important; they describe the tray
to tray behavior inside the column. In addition, the measurements do not provide sufficient
information to include short term dynamics.

To describe the overall dynamics of the column, a simplified model comprised of an overall
separation approximation, combined with first order dynamics for the exhaustion, has been
derived (Betlem, 1997):

dMcol

dt
= −LV (1 − R∗) (6.1)

Mcol
dxcol

dt
= −LV (1 − R∗)(x0

n+1 − xcol) (6.2)

x0
n+1 = f(R∗, xcol) (6.3)

in whichMcol(mol) is the mass of the column,LV (mol/h) is the vapor flow rate,−LV (1−
R∗) = LD(mol/h) is the distillate flow rate,xcol is the average molar ethanol fraction in the
column,x0

n+1 is the molar ethanol fraction of the product andR∗ is the reflux fraction.Mcol

andxcol are introduced to avoid the need for tray-to-tray equations to describe the column.
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The productionMp can be calculated as follows:

Mp = Mcol,0 − Mcol (6.4)

This model assumes constant vapor flow. During start-up, this flow changes due to the warm-
ing up of the column. This behavior can be approximated by a first order relation:

dLV

dt
=

1
τV

(LV,ss − LV ) (6.5)

in which τV is the first order time constant that characterizes column heating andLV,ss is
the steady state vapor flow for the given heat supply (this is an approximation, since the
vapor flow changes during the batch run due to exhaustion). The actual behavior is more
complex, as explained before. After the vapor flow reaches the condensor the behavior of
the flow can be approximated by the first order equation. For this approximation, an estimate
for the initial conditionLV,0 should be used such that the equation matches the observed
behavior. The start-up behavior of the model before the vapor flow reaches the condensor is
not incorporated and not represented by the measurements. As a result, the model describes
only the final stage of the start-up procedure.

Equation 6.3 describes the separation as a function of the reflux fraction and the column
quality. This relation is difficult to derive. Relations based on a so-called separation factor
have been used, but they only approximate the separation for steady state conditions as they
are valid for continuous operation (Shinskey, 1984).

Based on the process data, a fuzzy relation that describes the separation can be derived. Since
it is derived form the data, it can match the observed behavior without imposing a functional
relation a priori, as is the case with empirical separation factor relations. In addition, the
influence of the start-up on the product quality can be taken into account by incorporating
the vapor flow in the input space of the fuzzy model. This way, a hybrid model is obtained
that includes first order exhaustion dynamics, first order startup dynamics and a static fuzzy
relation that describes the product quality. The structure of the fuzzy relation is therefore
given by:

x0
n+1 = ffuzzy(R∗, xcol, LV ) (6.6)

This model does not take top concentration dynamics, characterized by the dominant time
constant of the column (Betlem, 2000), into account. It is interesting to investigate to what
extend incorporating column dynamics influences the result. This illustrates the effect that
omitting characteristic dynamic information has on model performance. To incorporate the
dominant column dynamics, a first order state equation for the product quality is used:

dx0
n+1

dt
=

1
τx

(x∗ − x0
n+1) (6.7)

in whichτx is the dominant time constant andx∗ is given by:

x∗ = ffuzzy(R∗, xcol, LV ) (6.8)

Equation 6.8 can be interpreted as the forcing function for the product quality.
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Run τV (h) LV,0 (mol/h) LV,ss (mol/h)

ID1 0.2 120 165
ID2 0.2 120 165
ID3 0.2 120 168
Average 0.2 120 166

Table 6.2: Estimation results parameters start-up dynamics

The result is two different hybrid model structures: a model that does not incorporate top con-
centration dynamics, denoted as thesimplified overall static model, given by equations 6.1,
6.2, 6.5 and 6.6, and a model that incorporates top concentration dynamics, denoted as the
simplified overall dynamic model, given by equations 6.1, 6.2, 6.5, 6.7 and 6.8. Appendix F
shows the DFD’s of both structures. Both models will be build and compared.

6.2.2 Simplified overall static model identification

Identification of the simplified overall static model involves the determination ofτV ,
LV,0, LV,ss and identification of the fuzzy relationship for the product quality (equation 6.6).

Start-up dynamics

The time constantτv and the steady state valueLV,ss were determined by fitting equa-
tion 6.5 to the measurements ofLV . In addition, the initial conditionLV,0 was determined to
provide a better approximation. Results are shown in figure 6.3. Table 6.2 shows the values
of τV , LV,0 andLV,ss for the three identification runs. The final values that will be used in
the model are the averages of the values for the three runs.

Product quality

For the identification of the fuzzy submodel,R∗, xcol, LV andx0
n+1 need to be available.

The reflux fractionR∗, the vapor flowLV and the product qualityx0
n+1 are measured. The

column qualityxcol can be obtained by solving equations 6.1 and 6.2. This is done for each
of the three identification runs. The combined runs result in an input-output data set of 512
features.

The fuzzy model was identified using GK-clustering in combination with structure optimiza-
tion (see section 4.4.1). No data reduction was applied; it was found that data reduction did
not improve clustering results. Clustering settings and results are shown in table 6.3. The
table also gives the Root Mean Squared Error with respect to the identification data. The
fuzzy model is given in appendix F.
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Figure 6.3: Model results for LV , run ID1 (a), ID2 (b) and ID3 (c)

Model validation

To analyze the performance of the model, the model will be solved for the initial condi-
tions of the identification and validation runs. The simulation will use the measurements of
the manipulated variableR∗ as the model input. The results for the product qualityx0

n+1 for
the five batch runs are given in figure 6.4. The hybrid model describes the identification data
well, although the overshoot during start-up (at aboutt = 0.5 h) is not described accurately.
The overshoot is a relatively small part of the behavior during a batch run, as a result of which
it is not taken properly into account by the clustering algorithm.

Model k0 γcm # rules RMSE

x0
n+1 10 0.7 3 6.5e-4

Table 6.3: Clustering settings and fuzzy model results for x0
n+1
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Figure 6.4: Model validation results for x0
n+1 of the simplified overall static model. Dots indicate

measurements, line indicates hybrid model results for ID1 (a), ID2 (b), ID3 (c), VAL1 (d) and VAL2 (e)
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Batch K τI

ID1 5 0.04
ID2 5 0.07
ID3 4 0.1

Table 6.4: PI-estimator settings for x∗

6.2.3 Simplified overall dynamic model identification

Identification of the simplified overall dynamic model involves the determination ofτV ,
LV,0, LV,ss and identification of the fuzzy relationship for the forcing function of the product
quality (equation 6.8). The parametersτV , LV,0, LV,ss are the same as for the static model.

Product quality forcing function

To identify the forcing function,R∗, xcol, LV andx∗ need to be available. As before,xcol

can be obtained by solving equations 6.1 and 6.2.x∗ will be estimated using a PI estimator
(section 4.3.2). The measurements ofx0

n+1 will serve as the reference and equation 6.7 is the
model part of the estimator (figure 4.6). The estimator was tuned manually and good results
were achieved for the settings given in table 6.4, as shown in figure 6.5.

The fuzzy relationship forx∗ was identified with fuzzy clustering. Settings are shown in
table 6.5 and the fuzzy model can be found in appendix F. The error in the fuzzy model is
larger than the error in the fuzzy model forx0

n+1. This is caused by the amount of noise that
is present in the estimates ofx∗. It is expected that this does not influence the simulation
results much, which should be investigated during model validation.

Model validation

The validation simulation results are acceptable (figure 6.6). The initial conditionx0
n+1,0

was estimated at 0.98, which is the average value forx0
n+1 at t = 0 h of the different batch

runs. Similar to the static model, the fuzzy relation is not able to describe the overshoot in
x∗ well, as can be seen in appendix F. This error is integrated and the result is thatx0

n+1 lags
behind, as is the case for ID1 and VAL2. The overshoot inx0

n+1 is described slightly better
than with the static model. In addition, the simulation results forx0

n+1 contain less noise.
This is the result of the dynamic equation for the product quality, which has a filtering effect.

Model k0 γcm # rules RMSE

x∗ 10 0.6 3 3.7e-3

Table 6.5: Clustering settings and fuzzy model results for x∗
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Figure 6.5: Estimation results of x∗ for batch run ID1 (a), ID2 (c) and ID3 (e), and corresponding
estimates of x0

n+1 ((b), (d) and (f), respectively).
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Figure 6.6: Model validation results for x0
n+1 of the simplified overall dynamic model. Dots indicate

measurements, line indicates hybrid model results for ID1 (a), ID2 (b), ID3 (c), VAL1 (d) and VAL2 (e)
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6.3 Hybrid model evaluation

Both the static and dynamic models describe the overall behavior of the distillation col-
umn and have a simple structure, which makes detailed evaluation of model interpretability
and complexity of less interest. The focus of the evaluation phase will therefore be on the
application of the models; the models will be used to determine the production curve which
describesMp in relation to the batch timetb.

6.3.1 Production curve

Evaluating the production as a function of the batch time results in aproduction curve
(see also Rippin (1983)). The curve represents the amount of product produced as a function
of the duration of a batch. To construct such a curve, it is required that each batch produces
product with the same quality. Since the hybrid models calculate the production under con-
stant quality control, the product quality is constant over the course of a batch. A production
curve can then simply be constructed by calculating the production during the course of a
single batch run.

The production curves will be determined by simulating batch runs using the constant quality
control strategy. To accomplish this, a simple PI controller is constructed that controls the
quality x0

n+1 by manipulatingR∗, similar to the experimental setup. This results in closed
loop simulation in which the models are used as stand alone simulators. Controller switching
is also included; the controller is switched on if the deviation from the setpoint is less than
0.002. Until then,R∗ = 1.

Production curves were constructed for the conditions of the three identification batch runs.
This enables comparison to the experimental results. Both the hybrid models were used.
Controller settings for both models are given in table 6.6. Figure 6.7 shows controller per-
formance for the conditions of batch ID1; in both cases, the qualityx0

n+1 is controlled well.
The dynamic model shows some overshoot. The presence of overshoot was found to be in-
dependent of controller tuning, which indicates that it is the result of general model behavior,
similar to the experimental results.

The controller gainK is negative for the static model. This means that in order to increase
product quality, the reflux fractionR∗ has to be decreased. This is in contradiction to what is
expected physically and is caused by the fuzzy model forx0

n+1. The consequent parameters
with respect toR∗ (which are a measure for the partial derivatives∂x0

n+1∂R∗) are negative,
which locally results in an increase ofx0

n+1 if R∗ is decreased.

Model K τI

Static -50 0.1
Dynamic 100 0.1

Table 6.6: PI-controller settings for x0
n+1
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Figure 6.7: Quality control results static (a) and dynamic (b) model, settings run ID1.

The negative parameters are the result of the fit to the experimental data. The fuzzy model
maps the reflux fraction, the column composition and the vapor flow to the product quality.
With the exception of start-up, the product qualityx0

n+1 is constant throughout the batch run.
This means that the fuzzy model essentially describes a hyperplane with slope 0. Due to the
noise that is present, the least squares fit results in a slightly negative slope with respect to
R∗.

Although it was found that the controller of the static model achieves constant quality, the
reflux fractionR∗ is not manipulated in accordance with the experimental results. This can
be observed from the production curves, which are shown figure 6.8. The duration of the
batches during simulation was 10h, which is longer than the actual experiments. This was
done in order to simulate maximum exhaustion. The horizontal line indicates the theoretically
maximum production (when all of the volatile component is recovered). On average, the
reflux fraction of the static model is lower than the reflux fraction of the dynamic model,
which results in production that is higher than the theoretical maximum.

If R∗ changes, it takes some time before the overall effect onx0
n+1 is observed. This is

characterized by the dominant time constantτx. The static fuzzy model does not incorporate
this information. The result is that the product qualityx0

n+1 is not correlated correctly with
the inputsR∗, xcol andLV . This can clearly be seen during start-up. Consider figure 6.2. In
figure 6.2 (b), the reflux fractionR∗ is approximately 1 during the first 0.25h of the batch.
At this moment, the product qualityx0

n+1 is relatively low, as shown in figure 6.2 (a). The
static fuzzy model correlates high reflux fractions with low product quality, which is not
in accordance with what would be expected. In the dynamic model, the extra information
that dominant the time constant provides is incorporated. Here,x∗ is relatively high during
the first 0.25h, as shown in figure 6.5. High reflux fractions are correlated with highx∗.
The result is that the dynamic model approximates the experimental situation much more
accurately. In addition, the extrapolation behavior (tb > 3 h) is in accordance with the
expectation that the maximum exhaustion is below its theoretically achievable value.

The dynamic model includes the top concentration dynamics using a first order approxi-
mation characterized by the dominant time constant. An alternative would be to derive the
dynamic behavior of the product quality from experimental data and incorporate this behavior
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Figure 6.8: Production curves for the conditions of batch run ID1 (a), ID2 (b) and ID3 (c). Solid line
experimental results, dotted line static model, dashed line dynamic model

in the form of a dynamic fuzzy submodel. The structure of such a hybrid model is similar to
the structure of the static model and omits the need for a first order approximation. However,
as shown in chapter 5, the experimental data needs to contain sufficient information about
the dynamics in order to obtain a good model. In this case, experimental data is limited and
noisy. The incorporation of the dominant time constant can be viewed upon as the use of an
additional source of information, that does provide sufficient information about the dynamics
without the need for more experimental data.

The results show that the performance of the static model is acceptable if the desired behav-
ior of R∗ is imposed on the model. During model validation, the desired behavior of the
reflux fractionR∗ was given by measurements. During the construction of the production
curves, the behavior ofR∗ was determined by a PI controller. Since the static model does
not provide sufficient information about the dynamic behavior of the product quality, the val-
ues ofR∗ given by the PI-controller do not approximate the measurements, which results in
unacceptable performance.

The simulation also shows the influence of the start-up of the column. Production starts when
the quality controller is switched on and the reflux fraction decreases. The start-up behavior
as described the dynamic model is similar to the experimental results.
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Figure 6.9: Geometric determination of the optimal batch time

6.3.2 Optimal batch time

To illustrate the application of the dynamic hybrid model, the optimal batch times for the
five batches will be determined and compared with the experimental results. Consider the
optimal batch timetb,opt as defined by the batch time for which the average production rate,
given by

Rp =
Mp

tb
, (6.9)

is maximal. The optimal batch time can be obtained by simple geometric means, as illustrated
in figure 6.9.

The hybrid model is used as a stand-alone simulator. This means that the model parameters
are not changed for the different batch runs. Only the initial conditionsMcol,0 andxcol,0

of the model are set to match the experiments. The initial conditionsLV,0 andx0
n+1,0 were

equal for all simulations and set to 120mol and 0.98, respectively. Table 6.7 shows the
experimental and simulation results.

The simulated maximum average production ratesRp,max are in accordance with the mea-
sured results. The optimal batch times however, as predicted by the model, are shorter than
the actual optimal batch times. The model predicts consistently increasing batch time for
increasingxcol,0. This is not observed from the experimental results. The error is mainly
caused by the differences in controller switching time. Figure 6.8 shows that the general
trend of the simulated production curves match the experiments, but that production starts at

Measurements Hybrid model
Run tb,opt (h) Rp,max (mol/h) tb,opt (h) Rp,max (mol/h)

ID1 1.33 25.0 1.10 28.1
ID2 1.65 32.0 1.30 34.8
ID3 1.57 42.5 1.55 42.6
VAL1 1.66 22.9 1.10 28.4
VAL2 1.42 32.8 1.25 34.0

Table 6.7: Optimal batch times and maximum production rates
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different times.

In the simulations, controller switching is implemented according to the procedure that was
used during the experiments. However, during the experiments, the procedure was performed
manually and the actual switching times were not recorded. Variations in the execution of the
procedure would result in different optimal batch times.

In addition, the initial conditionsx0
n+1,0 andLV,0 and the parametersτV andLV,ss have a

large influence on the behavior ofx0
n+1 during start-up. Inaccuracies in these parameters

influence the switching time of the controller and thus the optimal batch time. The perfor-
mance of the hybrid model could be improved by investigating these parameters and their
estimation. This requires additional experimentation.

6.4 Concluding remarks

The model presented in this chapter shows that the hybrid modeling approach has been
successfully applied in a situation where limited experimental data is available. It was pos-
sible to design a relatively simple model, in which the dynamic characteristics are obtained
from previous research and the static characteristics are based on experimental data. It was
also possible to use the model to investigate batch operating conditions for distillation of
a single cut. Results, however, can be improved if some of the model parameters can be
determined more accurately.

The advantage of the simplified overall dynamic hybrid model is that it can describe the
production of the batch column including part of the start-up of the column, without the need
for a detailed description of internal column dynamics. The model structure is based on the
simplified overall model proposed in Betlem (1997), but the description of the separation is
derived from observed behavior without making a priori assumptions.

The hybrid model does not provide more information than is provided during model design.
The experimental data describes the behavior of the column under constant quality control
for one single product quality, which means that the hybrid model is only valid under these
conditions. In addition, omitting relevant dynamic information in the model structure does
not give problems if this information is imposed on the model; model validation, where the
desired behavior ofR∗ was imposed by the measurements yielded acceptable performance
of the static model, while the results during the construction of the production curves were
unacceptable.

In general, in order to obtain good results, a process model needs to describe the most impor-
tant dynamic characteristics of a process. The simulation results of the static and dynamic
models illustrate that this is not different for hybrid models; since the fuzzy submodels are
static, hybrid fuzzy-first principles models as presented in this work have the same dynamic
characteristics as first principles models.
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In the previous chapters, the analysis and design of hybrid fuzzy-first principles models
have been illustrated. This chapter discusses the main conclusions with respect to the hybrid
modeling procedure and hybrid model properties. In addition, some suggestions for future
research are given.

7.1 Hybrid modeling

Hybrid fuzzy-first principles models, as presented in this work, consist of a framework of
dynamic mass and energy balances, formulated in state space form, supplemented with alge-
braic and fuzzy equations. The fuzzy equations describe physical phenomena that are poorly
understood or difficult to model using first principles. This is a serial modeling approach,
which results in a model structure in which internal variables can be interpreted physically.
This way, the model structure guarantees a certain level of transparency.

The main sources of information during hybrid model development are first principles, pro-
cess data and human expertise. First principles are used to derive the model structure. Al-
though fuzzy logic is extremely suitable to quantify expert knowledge, it is often difficult
to integrate this knowledge in a predefined hybrid model structure. In the hybrid modeling
context, expert knowledge is more suitable to provide structural information. For example,
it can be used to identify the essential characteristics of a process. Process data can then be
used to derive quantitative information.

The type of fuzzy model which is used is the TSK type. This type can be interpreted as a
collection of local linear models. The operating range of these local models is determined
by (a combination of) fuzzy sets. This type of fuzzy model is extremely suitable to describe
highly nonlinear relations. In addition, many good identification algorithms exist for deriving
TSK models from process data. Although linguistic fuzzy models can be interpreted better
by humans, they require a more complex structure to describe the relations than TSK models.
The advantage of using TSK type fuzzy models is reduced complexity in combination with
structural transparency.

To build a hybrid model, the modeling problem is partitioned into several smaller and sim-
pler problems, which can be solved by performing a series of sequential steps. This is an
advantage over proposed global approaches, in which the modeling problem is approached
as a whole. A structured modeling approach is presented, which consists of three phases.
The steps of the modeling approach are performed sequentially and independently of each
other. This provides modelers with the flexibility to use different or customized modeling
tools. In the first phase, the model objective and quality requirements are formulated. The
second phase involves the design of the model, which can be summarized as follows:

• Determine the hybrid model structure by characterizing process behavior and distin-
guish subprocess modeling problems, for which fuzzy submodels should be developed

• Based on this structure, acquire relevant process data

• Estimate any unmeasurable behavior of the subprocesses
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• Identify the fuzzy submodels and determine other model parameters

• Integrate the fuzzy submodels in the hybrid model structure by optimizing their param-
eters with respect to the hybrid model output

In the final phase, the hybrid model is evaluated with respect to the model requirements. The
model quality is determined by evaluating model performance, complexity, interpretability
and process independence.

For the identification of the fuzzy submodels, three different classes of identification algo-
rithms were compared: fuzzy clustering, neurofuzzy methods and genetic algorithms. Fuzzy
clustering provides a better way to identify the fuzzy submodels than neurofuzzy methods
or genetic algorithms do. This unsupervised learning approach requires less a priori model
structure information and therefore is less sensitive to initialization. This makes the approach
useful in situations where little a priori information about the modeled phenomenon is avail-
able.

During submodel integration, the parameters of the fuzzy models are optimized. The fuzzy
models that result from the identification step are used as the starting point. Since the num-
ber of parameters of fuzzy models can be quite large, the optimization is focused on the
parameters that have the most influence on the results. In general, these are the consequent
parameters. In addition, the number of parameters to be optimized can be reduced by opti-
mizing rule or model weights. Sensitivity analysis can help to determine the most relevant
fuzzy models or fuzzy model parameters and gains insight in the optimization results, as well
as the model behavior.

Hybrid models for three processes were developed. A simulated fed-batch bioreactor was
used to investigate the use of different modeling tools. The hybrid model performs well. In
addition, detailed analysis of the performance of the modeling tools is possible because of the
simple model structure. To illustrate the modeling approach on a more complex system and to
investigate hybrid model properties, a hybrid model for a simulated continuous pulp digester
was developed. The model describes the process using a structure that represents character-
istic physical phenomena and contains four fuzzy submodels. The simplifications result in
some differences between the behavior of the hybrid model and the reference model. How-
ever, the hybrid model meets the quality requirements that were set. Finally, the modeling
approach was used to develop a hybrid model for a experimental batch distillation column.
The hybrid model describes the overall dynamic behavior of the column with four state equa-
tions and one fuzzy submodel. The behavior of the top quality is characterized by a dominant
first order time constant and a fuzzy model that describes the quality forcing function. The
hybrid model describes the experimental data well, including (part of) the start-up behavior.

7.2 Hybrid model properties

The use of fuzzy logic has an advantage over other black box techniques. The way fuzzy
models are used in this work combines unsupervised learning with the ability to describe com-
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plex or poorly understood phenomena more transparently than other black box techniques,
such as artificial neural networks. Fuzzy clustering yields fuzzy models with independent
rules and which are constructed using little a priori information. This way, the fuzzy models
are derived from the observed behavior without imposing a predefined model structure. A
posteriori, it is possible to analyze and interpret the model structure in terms of characteristic
operating regimes, complexity and the level of nonlinearity.

With respect to dynamic performance, complexity and interpretability, hybrid models are
similar to first principles models. This is inherent to the hybrid model structure. Since the
dynamic structure is based on first principles, the dynamic performance of hybrid and first
principles models is comparable. In addition, the level of interpretability is comparable. In
both types of models, the model structure provides information about the relations between
the modeled physical phenomena. Physical interpretation on a more detailed level is only
possible if the specific equations are based on first principles. If not, as is the case with
empirical or fuzzy relations, interpretation is limited to a characterization of the behavior of
the equations.

Static performance and process independence of hybrid models are comparable with fuzzy
models. Depending on the number of fuzzy equations in a hybrid model, static performance
is similar to the static performance of a fuzzy model. In both cases, the static properties are
derived from observed behavior. In the case of the hybrid model, the model structure may
influence static performance. Since a complete fuzzy model has a high number of parameters
in relation to its model structure, it has more flexibility to describe the desired behavior than
a hybrid model has. However, for the test cases discussed in this work, the hybrid models
could achieve acceptable static performance.

Since fuzzy models are data driven, they are only valid in the operating regime that is rep-
resented by the identification data. The first principles part can only partly compensate for
limited validity of the fuzzy models outside this operating regime. It also imposes a level of
process dependence for hybrid models; process dependence is increased if the fuzzy part of
the hybrid model is increased.

Similar to first principles models, hybrid fuzzy-first principles models can match desired dy-
namic behavior if the model structure represents the essential dynamic characteristics of the
process. This was illustrated with the pulp digester case, where a simplified hybrid model
matches the performance of a detailed first principles model. This was achieved by deter-
mining the essential characteristics of the process from a physical point of view, for given
operating conditions. It was also illustrated with the batch distillation case, where hybrid
model performance was improved by incorporating essential dynamic information. The use
of fuzzy logic in hybrid models introduces flexibility, which enables the description of com-
plex behavior with a predefined, interpretable overall model structure.
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7.3 Suggestions for future research

In chapter 1, four different trends that in all likelihood will characterize the future de-
velopment of intelligent systems were presented (Stephanopoulos and Han, 1996). As was
shown in this thesis, hybrid modeling can be seen as part of two of these trends: the integra-
tion of multiple knowledge representations and the integration of processing methodologies.
It seems therefore appropriate to discuss suggestions for future research in relation to these
trends.

A process model is not often a goal in itself. The true merit of hybrid fuzzy-first princi-
ples modeling becomes apparent during extensive application of the proposed approach. The
influence of the choices that were made for the general hybrid model structure and the mod-
eling approach will then be clear. In this light, the use and relation of the different sources of
information is of particular interest.

A frequently made statement is that modeling is more of a craft than it is a science. This
illustrates the difficulties associated with turning data into knowledge. A modeler must have
the ability to distinguish relevant from irrelevant information. In addition, he or she should
be able to combine information that is represented in different ways. Structured modeling
approaches, such as presented in this work, provide modelers with a framework that can be
helpful in accomplishing this. However, the use and application of information, as well as the
combination of information that is represented in different ways, is often based on experience.

Hybrid fuzzy-first principles models, to some extend, provide a way to combine information
that is represented in the form of first principles, expert knowledge and process data. Ex-
pert knowledge can be used to determine essential characteristics, first principles knowledge
is used to determine the relations between these characteristics and process data is used as
a source of quantitative information. It would be interesting to investigate the relation and
combination of these sources of information in more detail. This can provide a more method-
ological approach for the design of the hybrid model structure. A starting point would be to
use insights in this matter from research fields such as data mining, knowledge engineering
or psychology and adapt them for process modeling.

The use of hybrid models in the optimization of process operation is an interesting area of
application. For these optimization problems, models need to be general (i.e. valid for a wide
variety of operating conditions), structured and easy to calibrate (Caganet al., 1996). Hybrid
models have a physically interpretable structure, are able to describe complex nonlinear be-
havior and are easier to build than detailed first principles models. An illustrative example
of an application in optimization is presented in Simutiset al. (1997). Here, the influence of
process models on increasing the benefit/cost ratio of model-supported optimization and con-
trol is addressed. The influence of augmenting a first principles model with neural networks
for the optimization of the operation of a biochemical reactor is investigated. The structure
of the resulting hybrid model is similar to the structure of hybrid models in this work.
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Figure A.1: Membership function for a crisp set

This appendix describes some basic concepts regarding fuzzy set theory and presents
different structures of fuzzy models. Most of this appendix is based on Yager and Filev
(1994), which gives a more detailed discussion about fuzzy logic.

A.1 Basic concepts

A.1.1 Fuzzy sets

In ordinary set theory, an ordinary or crisp subset is defined with respect to some universe
of discourseX , which in itself is a crisp set. Such a subset is described with a characteristic
function, indicating the membership of the subset. LetX be a universe of discourse and let
S be a subset ofX . The characteristic function can be defined as

µS : X → {0, 1} (A.1)

such that for any elementx of the universe,µS(x) = 1 if x is a member ofS andµS(x) = 0
if x is not a member ofS. Figure A.1 illustrates this.

A fuzzy subsetis described by a characteristic function that differs from equation A.1 in that
it is extended from the unit binary pair{0, 1} to the unit interval[0, 1]:

µS : X → [0, 1] (A.2)

Equation A.2 is called amembership function. The membership function describes to which
degree an element is a member of the fuzzy subset. LetS be a fuzzy subset of the universe
of discourseX . The membership ofS for an elementx is calculated with the membership
function forS and is denoted themembership gradeµS :

µS = mfS(x) (A.3)
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Figure A.2: Double sigmoid membership function

Commonly used shapes for membership functions are triangular, trapezoidal, gaussian or bell
shapes. This work uses continuously differentiable double sigmoid membership functions,
given by:

µ =
1

1 + exp (−a1(x − c1))
1

1 + exp (−a2(x − c2))
(A.4)

in which a1, c1, a2 andc2 are the membership function parameters. Figure A.2 shows an
example.

Fuzzy subsets are particularly useful for representing concepts with imprecise boundaries.
Assume a domain of peopleX . Using a fuzzy subset to representtall people discards the
restriction of having to categorize every person as a member of the settall or not, as is
the case for a crisp subset. Instead, it is possible to make more subtle distinctions by using
membership grades, such as ”not tall at all” or ”definitely tall” and thereby to more naturally
represent the imprecise concept of being tall.

A.1.2 Operations on fuzzy sets

Fuzzy set operations are an extension of operations on crisp sets. Research in this area
has been very extensive and much literature is available. Some important operations are
discussed here.

Consider two fuzzy subsetsA andB of X . Theunionof the fuzzy subsetsA andB is a fuzzy
subsetC, denotedC = A ∪ B, such that for eachx ∈ X :

C(x) = max (A(x), B(x)) = A(x) ∨ B(x) (A.5)

in which ∨ denotes themax operator. In essence, this is an extension of the logical OR
operator. The counterpart of the union is theintersection. The intersectionD of two subsets
A andB, denotedD = A ∩ B, is given by:

D(x) = min (A(x), B(x)) = A(x) ∧ B(x) (A.6)
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in which ∧ denotes themin operator. This is an extension of the logical AND operator.
Another commonly used intersection operator is the product. For crisp sets, the result is the
same as with themin operator. For fuzzy sets, results differ. In this work, themin operator
is used.

A.1.3 Linguistic values and degree of truth

A fuzzy subset can be used to describe the meaning of a concept. In the above, a fuzzy
subset of the length of a person was used to definetall. One use of this presentational ability
of a fuzzy subset is to help definelinguistic values. AssumeV is a variable taking its value
in the setX . The usual way to represent information about this variable is by statements of
the formV = x, wherex is some value in the setX . This idea can be extended to allow the
value ofV to assume some linguistic value. Thus ifV describes a persons length, statements
of the following form can be allowed:

V = tall (A.7)

Using the membership function fortall, thedegree of truthof the statement in equation A.7
can be calculated. When the premise

V = x (A.8)

is given, and the statement given in equation A.7 is made, the degree of truth of this statement
is calculated as the membership grade ofx in tall.

The use of linguistic values essentially means the association of a fuzzy subset with the value
of a variable and is very important in inferencing fuzzy models.

A.1.4 Defuzzification

In many applications of fuzzy techniques it may be necessary to transform a fuzzy subset,
or a collection of subsets, to a crisp value. This is known asdefuzzification. In general, two
methods are applied: the Mean of Maxima (MOM) method and the Center Of Area (COA)
method.

With the Mean of Maxima method, the crisp output is calculated as a mean of all values in
the universe of discourse that have maximal membership grades:

y =
1
m

∑
yi∈G

yi (A.9)

in whichG is the set of elements which attain the maximum value of the membership grades
µF,yi of the fuzzy subsetF andm is the cardinality ofG.
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The MOM method does not take the shape of the fuzzy subset into account. The Center Of
Area method does not have this problem. COA defuzzification is calculated as follows:

y =
∫

yµF,ydy∫
µF,ydy

(A.10)

A.2 Fuzzy models

Fuzzy models, a representation of the essential features of a system by the apparatus of
fuzzy set theory, basically fall into two categories, which differ fundamentally in their ability
to represent different types of information. The first includes linguistic models, of which the
Mamdani-type are the most common. These models are based on collections of IF-THEN
rules with vague predicates and fuzzy reasoning.

The second category of fuzzy models is based on the Takagi-Sugeno-Kang (TSK) method of
reasoning (Takagi and Sugeno, 1985)1. These models are formed by logical IF-THEN rules
that have a fuzzy antecedent part and a functional consequent part. TSK models integrate
the ability of linguistic models for qualitative knowledge representation with an effective
potential for expressing quantitative knowledge as well.

A.2.1 Linguistic models

Generally speaking, linguistic models describe systems using a set of IF-THEN rules, in
which the rules take the place of the usual set of equations used to characterize a system. The
linguistic model is a knowledge-based system; it contains rules which incorporate inherently
fuzzy or effectively fuzzifiable real-world knowledge. The decision making ability of the
linguistic model depends on the existence of a rule-base and fuzzy reasoning mechanism.

Consider a double-input single-output system. Knowledge about this system can be encoded
by a set of IF-THEN rules with two antecedent variables and one consequent variable:

IF u1 = mfu1,i AND u2 = mfu2,j THEN y = mfy,k (A.11)

in which the fuzzy sets are represented by the membership functionsmf∗,∗. The IF-part
of a rule is called thepremiseor antecedentpart of the rule, the THEN part is called the
consequent part.

The number of rules and the structure depends on the knowledge that the model represents.
The maximum number of rules of the fuzzy model is determined by the maximum number of
combinations of the antecedent membership functions. Consider the rule in equation A.11.
If 3 fuzzy sets for bothu1 andu2 are available, the maximum number of rules for the fuzzy

1 In the literature, fuzzy models based on the TSK method of reasoning are called TSK models,
Sugeno models or TS models. They all denote the same type of model.
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model is 9. If a fuzzy set occurs in more than one rule, the rules aredependent; changing the
fuzzy set will affect the behavior of several rules. If a fuzzy set occurs only in one rule, the
rules areindependent.

A.2.2 Fuzzy inference

The following algorithm is used for calculation of the output that is inferred by an lin-
guistic model, via the Mamdani method. Assume a linguistic model for a 2-by-1 system as
given in equation A.11 with 2 independent rules:

IF u1 = mfu1,1 AND u2 = mfu2,1 THEN y = mfy,1

IF u1 = mfu1,2 AND u2 = mfu2,2 THEN y = mfy,2
(A.12)

Also assume a crisp inputu1 = x∗
1 andu2 = x∗

2. The first step is to determine the influence
the different rules of the model have on the output of the model. The influence of a rulei is
measured by its degree of firing (DOF)τDOF,i, which represents the degree of truth of the
premise part of a rule, given the premiseu1 = x∗

1 andu2 = x∗
2. The DOF is calculated as:

τDOF,i = mfu1,i(x∗
1) ∧ mfu2,i(x∗

2) (A.13)

The DOF of a rule can be used to determine the fuzzy set for the output of that rule, given the
premiseu1 = x∗

1 andu2 = x∗
2. This is the inference step:

mf∗y,i(y) = τDOF,i ∧ mfy,i (A.14)

The next step is to aggregate the inferred fuzzy sets mf∗
y,i by using themax operator:

mfy(y) = ∧2
i=1mf∗y,i (A.15)

The final step involves defuzzification of the aggregated fuzzy set for the outputy, which
results in a crisp output value. Figure A.3 shows the inference mechanism.

A.2.3 TSK models

A known disadvantage of the linguistic models is that they do not incorporate specific
knowledge in an explicit form, if that kind of information is available but cannot be ex-
pressed within the framework of fuzzy set theory. This kind of information is often available
in the form of mathematical equations. Sugeno and co-workers proposed an alternative form
of fuzzy reasoning, which provides a possibility to incorporate such information. The TSK
reasoning method is associated with a rule-base of a special format that is characterized with
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Figure A.3: Fuzzy inference mechanism for linguistic models

functional type consequence parts instead of the fuzzy consequence parts used in the lin-
guistic model. For a 2-by-1 system with two independent rules this can be represented as
follows:

IF u1 = mfu1,1 AND u2 = mfu2,1 THEN y = a1u1 + b1u2 + c1

IF u1 = mfu1,2 AND u2 = mfu2,2 THEN y = a2u1 + b2u2 + c2
(A.16)

In this example, the consequent part incorporates linear equations, but in essence, any func-
tion can be incorporated. The crisp outputy, inferred by the fuzzy model, is defined as the
weighted average of the crisp outputsyi of each rule:

y =
∑2

i=1 τDOF,iyi∑2
i=1 τDOF,i

(A.17)

The great advantage of TSK models is the power to describe complex technological pro-
cesses. The problem is decomposed into simpler sub-systems, in many cases linear.
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cLm = 0.0084 h−1

K = 0.01 h−1

KI = 1.0 g/l
KL = 0.05
Kp = 0.0001 g/l
KX = 0.3
mxm = 0.029 h−1

qpm = 0.004 h−1

Yp/s = 1.2

Yx/s = 0.47

µm = 0.11 h−1

Table B.1: Bioreactor model parameters

This appendix describes the fed-batch bioreactor reference model which is used in chap-
ter 4.

B.1 Model equations

The model describes four states: the biomass concentrationX (g/l), the substrate con-
centrationS (g/l), the product concentrationP (g/l) and the volumeV (l). The state
equations are given by:

dX

dt
= X(µ − D − cL) (B.1)

dS

dt
= −σX + (Sf − S)D (B.2)

dP

dt
= qpX − P (D + K) (B.3)

dV

dt
= F (B.4)

in whichSf (g/l) is the feed substrate concentration,K (h−1) is the product decay constant.

Dilution rate:

D =
F

V
(B.5)

Growth rate:

µ =
µmS

KXX + 10
(B.6)

Cell lysis rate:

cL =
cLmX

KL + X + 1
exp(−S/100) (B.7)

Product formation rate:

qp =
1.5qpmSX

4Kp + XS
(
1 + S

3KI

) (B.8)
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Variable Noise amplitude
X 0.2 g/l
S 0.1 g/l
P 0.1 g/l
V 0 g/l
F 0.005 l/h

Table B.2: process and input noise amplitudes

Substrate consumption rate:

σ =
µ

Yx/s
+

qp

Yp/s
+ mx (B.9)

with

mx =
mxmX

X + 10
(B.10)

Model parameters are given in table B.1.

For the simulations, a discrete version of the model is implemented. White noise of a certain
amplitude is added to the model process state and input at time stepk. Since the state of
time stepk is used to calculate the state at time stepk + 1, some correlation occurs. Noise
amplitude settings are given in table B.2.

B.2 Notation

D Dilution rate (h−1)
F Feed flow rate (l/h)
K Constant (h−1)
KL Constant (−)
KX Constant (−)
P Product concentration (g/l)
S Substrate concentration (g/l)
SF Substrate concentration in the feed(g/l)
V Volume (l)
X Biomass concentration (g/l)
Yx/s Constant (−)
Yp/s Constant (−)
cL Cell lysis rate (h−1)
cLm Constant (h−1)
mx Maintenance energy (h−1)
mxm Constant (h−1)
qp Product formation rate (h−1)
α Net growth rate (hybrid model) (h−1)
µ Growth rate (h−1)
µm Constant (h−1)
σ Substrate consumption rate (h−1)
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Extended Purdue Model





Section Height (m) Cross sectional area S (m2)
A 5.50 18.0
B 1.34 18.0
C 1.83 18.7
D 1.55 18.7
E 9.81 18.7
F 1.46 18.7
G 5.18 18.7
H 1.58 19.9
I 1.74 19.9
J 2.01 21.1

Table C.1: EPM section dimensions

This appendix describes the Extended Purdue Model. The model flowsheet, section
model data flow diagram and model parameters are given. Other information can be found in
Wisnewskiet al. (1997).

C.1 Model flowsheet

The model flowsheet consists of a series of tubular reactors or ”sections” that are con-
nected to form the digester model. Mixers, splitters and heaters are also added. The flowsheet
is shown in figure C.1. Table C.1 shows section dimensions.

C.2 Section model

All model equations of the section model are listed here. Figure C.2 shows the context
diagram of the section model, while figure C.3 shows the Data Flow Diagram for the section
model. This DFD represents the physical effects that are modeled in relation to the states.

Mass balance solid phase:

∂ρs,i

∂t
= − φc

S(1 − η)
∂ρs,i

∂z
+ Rs,i for i = 1, . . . , 5 (C.1)

Mass balance entrapped phase:

∂ρe,iε

∂t
= − φc

S(1 − η)
∂ρe,iε

∂z
+ εDce(ρf,i − ρe,i)

+ Rs,i + φ̂bρf,i for i = 1, . . . , 6 (C.2)
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Mass balance free liquor phase:

∂ρf,i

∂t
= − 1

Sη

∂ρf,iφf

∂z
+ Dcf(ρe,i − ρf,i)

− 1 − η

η
φ̂bρf,i for i = 1, . . . , 6 (C.3)

Energy balance solid and entrapped phase:

∂

∂t
(CpsMs + CpeMeε)Tc = − φc

S(1 − η)
∂

∂z
(CpsMs + CpeMeε)Tc

+ ∆HR

5∑
i=1

Rs,i + U(Tf − Tc) + φ̂bCpfMfTf + εDceDE (C.4)

Energy balance free liquor phase:

∂

∂t
(CpfMfTf ) = − 1

S(ηS)
∂

∂z
(φfCpfMfTf) +

1 − η

η
U(Tc − Tf)

+
1 − η

η
φ̂bCpfMfTf + DcfDF (C.5)

Reaction rate:

Rs,i = −ef(k1,iρe,1 + k2,i
√

ρe,1ρe,3)(ρs,i − ρ∞s,i) for i = 1, . . . , 5 (C.6)

Reaction rate constants:

k1,i = A1,i exp
(−E1,i

RTc

)
for i = 1, . . . , 5 (C.7)

k2,i = A2,i exp
(−E2,i

RTc

)
for i = 1, . . . , 5 (C.8)

Reaction stochiometry:

Re,i =
5∑

j=1

bi,jRs,j for i = 1, . . . , 6 (C.9)

Volumetric bulk flow:

φ̂b =
−∑5

i=1 Rs,i

ρ̄s
for i = 1, . . . , 5 (C.10)

Diffusion coefficient:

Dce = 6.1321
√

Tc exp
(−4870

1.98Tc

)
(C.11)
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Volumetric correction for diffusion coefficient free liquor phase:

Dcf = Dce
ε(1 − η)

η
(C.12)

Net energy transported into woodchips per volume of diffusing mass:

DE = TpCpl

4∑
i=1

(ρf,i − ρe,i) + TpCps

6∑
i=5

(ρf,i − ρe,i) (C.13)

in which

Tp =
{

Tf if ρf,i > ρe,i

Tc if ρf,i < ρe,i
(C.14)

DF = −DE (C.15)

Porosity:

ε = 1 −
∑5

i=1 ρs,i

ρ̄s
(C.16)

Heat capacity entrapped phase:

Cpe = Cpl
Mel

Me
+ Cps

Mes

Me
(C.17)

Total density solid phase:

Ms =
5∑

i=1

ρs,i (C.18)

Total density entrapped phase
Me = Mel + Mes (C.19)

Heat capacity free liquor phase:

Cpf = Cpl
Mfl

Mf
+ Cps

Mfs

Mf
(C.20)

Total density free liquor phase
Mf = Mfl + Mfs (C.21)

Partial liquid components density entrapped phase

Mel = ρwater +
4∑

i=1

ρe,i (C.22)
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Partial solid components density entrapped phase

Mes =
6∑

i=5

ρe,i (C.23)

Partial liquid components density free liquor phase

Mfl = ρwater +
4∑

i=1

ρf,i (C.24)

Partial solid components density free liquor phase

Mfs =
6∑

i=5

ρf,i (C.25)

Kappa number:

κ# =
ρs,1 + ρs,2

0.00153
∑5

i=1 ρs,i

(C.26)

Yield:

γ =
∑5

i=1 ρs,i,exiting∑5
i=1 ρs,i,entering

(C.27)

C.3 Heater model

In the hybrid model, the EPM upper and lower heater are lumped to form a ”preheater”.
To make comparisons between the two models, the preheater has to provide the same amount
of energy as the upper and lower heater do. The resulting outlet temperature depends on this
energy, the composition of the flow and the flow rate. Therefore, in the EPM, the heaters are
modeled using a simple static energy balance. The heater model can be described as follows:

φout = φin (C.28)

Qh = φinCpinMin(Tout − Tin) (C.29)

Min = Ml,in + Ms,in (C.30)

in which

Ml,in = ρwater +
4∑

i=1

ρf,i,in; (C.31)

and

Ms,in =
6∑

i=5

ρf,i,in; (C.32)
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i Softwood (−) Hardwood (−)
1 0 0
2 0 0
3 0.71 0.65
4 0.25 0.25
5 0 0

Table C.2: Non-reactive fractions of solid phase components

Cpin = Cpl
Ml,in

Min
+ Cps

Ms,in

Min
; (C.33)

C.4 Typical operating values and parameters

The non-reactive portions of the solid components are related to the composition of the
wood entering the first section of the digester and are the same in any following digester
section. The non-reactive portions are independent of the exact wood composition, but do
depend on the type of wood. The non-reactive portions are related to the densities of solid
components entering the digester in the following way:

ρ∞s,i = α∞
s,iρs,i,in (C.34)

in which ρ∞s,i is the non-reactive portion of the component,α∞
s,i is the non-reactive fraction

andρs,i,in is the initial density of the component. The fraction for the solid phase components
are given in table C.2.

The stochiometric matrixb which links the reaction rates of the solid phase components to
the reaction rates of the entrapped phase components is defined as:

b =




βOHL − 0.5βHSL βOHL − 0.5βHSL βOHC βOHC βOHC

−(βOHL − 0.5βHSL) −(βOHL − 0.5βHSL) −βOHC −βOHC −βOHC

0.5βHSL 0.5βHSL 0 0 0
−0.5βHSL −0.5βHSL 0 0 0

−1 −1 0 0 0
0 0 −1 −1 −1


 (C.35)

The stochiometric coefficients for the consumption of Effective Alkali and Hydrosulfide are
stated in table C.3. Tables C.3 through C.6 show various other model parameters.

The implemented compaction profile is based upon (Wisnewskiet al., 1997), which uses
different, fixed compaction values for each CSTR. In the PFR approach used in this work,

Softwood Hardwood
βOHL 0.166 kg OH/kg lignin 0.21 kg OH/kg lignin
βOHC 0.395 kg OH/kg carbohydrate 0.49 kg OH/kg carbohydrate
βHSL 0.039 kg HS/kg lignin 0.05 kg HS/kg lignin

Table C.3: Stochiometric coefficients
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(s, 1) (s, 2) (s, 3) (s, 4) (s, 5)

A1 (hardwood) 0.3954 1.457E11 28.09 7.075 5.8267E3
A1 (softwood) 0.2809 6.035E10 6.4509 1.5607 1.0197E4
A2 (hardwood) 12.49 1.873 124.9 47.86 3.225E16
A2 (softwood) 9.26 0.489 28.09 10.41 5.7226E16
E1 29.3 115 34.7 25.1 73.3
E2 31.4 37.7 41.9 37.7 167

Table C.4: Pre-exponential factors and activation energies

those compaction values are linearized along the spatial domain. The following relations
describe the linear compaction profile. Two discontinuities exist at places in the digester
where the diameter alters.

η =




−0.0135z + 0.6966 for z ≤ 10.9195
−0.0122z + 0.7227 for 10.9195 < z ≤ 20.2502
−0.0101z + 0.7002 for 20.2502 < z

(C.36)
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Parameter Value Definition
φc 1.3964 m3/min woodchip flow rate
φf,in 2.3497 m3/min entering white liquor flow rate
φuh 7.2728 m3/min upper heater recirculation flow rate
Tuh 418.83 K upper heater recirculation temperature
φlh 6.7785 m3/min lower heater recirculation flow rate
Tlh 438.64 K lower heater recirculation temperature
φquench 0 m3/min quench recirculation flow rate
φwash 0.2067 m3/min wash zone recirculation flow rate
Twash 363.4 K wash heater temperature
φcheat 0.3514 m3/min cheater flow rate
φcool 0.5 m3/min cooling zone flow rate
φfilt 1.6312 m3/min entering filtrate flow rate
Tfilt 360.93 K entering filtrate temperature
Tc,in 395 K entering woodchip temperature
Tf,in 382 K entering white liquor temperature
ρs,1,in 25.37 kg/m3 high reactivity lignin density

of entering woodchip
ρs,2,in 101.49 kg/m3 low reactivity density

of entering woodchip
ρs,3,in 270.53 kg/m3 cellulose density

of entering woodchip
ρs,4,in 12 kg/m3 galactoglucomman density

of entering woodchip
ρs,5,in 129.03 kg/m3 araboxylan density

of entering woodchip
ρe,1,in 0.01 kg/m3 active effective alkali concentration

in entrapped liquor phase of entering woodchip
ρe,2,in 0.01 kg/m3 passive effective alkali concentration

in entrapped liquor phase of entering woodchip
ρe,3,in 0.01 kg/m3 active hydrosulfide concentration

in entrapped liquor phase of entering woodchip
ρe,4,in 0.01 kg/m3 passive hydrosulfide concentration

in entrapped liquor phase of entering woodchip
ρe,5,in 0.01 kg/m3 dissolved lignin concentration

in entrapped liquor phase of entering woodchip
ρe,6,in 0.01 kg/m3 dissolved carbohydrates concentration

in entrapped liquor phase of entering woodchip
ρf,1,in 78.8 kg/m3 active effective alkali concentration

of entering white liquor flow
ρf,2,in 0 kg/m3 passive effective alkali concentration

of entering white liquor flow
ρf,3,in 13.3 kg/m3 active hydrosulfide concentration

of entering white liquor flow
ρf,4,in 0 kg/m3 passive hydrosulfide concentration

of entering white liquor flow
ρf,5,in 59.6 kg/m3 dissolved lignin concentration

of entering white liquor flow
ρf,6,in 59.6 kg/m3 dissolved carbohydrates concentration

of entering white liquor flow
ρf,1,filtr 4.8055 kg/m3 active effective alkali concentration

of entering filtrate flow
ρf,2,filtr 0.01 kg/m3 passive effective alkali concentration

of entering filtrate flow
ρf,3,filtr 0.01 kg/m3 active hydrosulfide concentration

of entering filtrate flow
ρf,4,filtr 0.01 kg/m3 passive hydrosulfide concentration

of entering filtrate flow
ρf,5,filtr 45 kg/m3 dissolved lignin concentration

of entering filtrate flow
ρf,6,filtr 45 kg/m3 dissolved carbohydrates concentration of

entering filtrate flow

Table C.5: Standard operating parameters
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Parameter Value Definition
ef 0.9 − reaction rate multiplier
ρ̄s 1666 kg/m3 density of solid wood material
ρwater 999 kg/m3 density of water
∆H -518 kJ/kg heat of reaction
Cpl 4.19 kJ/(kg K) heat capacity liquor
Cps 1.47 kJ/(kg K) heat capacity wood substance
R 0.0083145 kJ/(mol K) universal gas constant
U 827 kJ/(min m3 K) heat transfer coefficient

Table C.6: Digester unit operation parameters

C.5 Frequency analysis

Figures C.4-C.7 show the Bode diagrams for the Kappa number and the yield as a func-
tion of the lower heater heat outputQlh and the liquor flow rateφf . Table C.7 shows the
frequency analysis results; the amplitudes∆κ# and∆γ are the gain for a 10 % and 7 % step
change inQlh andφl, respectively. The amplitudes for a positive and a negative step change
are presented. In the table,O denotes the order of the system response,τ the time constant
andθ the dead time.

Input O[input],κ O[input],γ τ[input],κ τ[input],γ θ[input] ∆κ# (−) ∆γ (−)
(min) (min) (min)

Qlh 2.3 2.3 42 43 87 -5.51, 6.17 -0.022, 0.022
φf 2.9 3.3 35 35 113 4.71, -4.06 0.019, -0.020

Table C.7: Frequency response analysis results for EPM
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Figure C.7: Bode diagram γ as a function of φf
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C.6 Notation

A1,i Arrhenius constant speciesi (m3/kg min)
A2,i Arrhenius constant speciesi (m3/kg min)
Cpe Heat capacity, entrapped phase (kJ/kg K)
Cpf Heat capacity, free liquor phase (kJ/kg K)
Cpl Heat capacity, liquor (kJ/kg K)
Cps Heat capacity, solid phase (kJ/kg K)
DE Energy transported into wood chip (kJ/m3)
DF Energy transported into free liquor phase (kJ/m3)
Dce Diffusion coefficient, entrapped phase (min−1)
Dcf Diffusion coefficient, free liquor phase (min−1)
E1,i Activation energy speciesi (kJ/mol)
E2,i Activation energy speciesi (kJ/mol)
Me Mass entrapped phase (kg/m3)
Mel Mass liquor components, entrapped phase (kg/m3)
Mes Mass solid components, entrapped phase (kg/m3)
Mf Mass free liquor phase (kg/m3)
Mfl Mass liquor components, free liquor phase (kg/m3)
Mfs Mass solid components, free liquor phase (kg/m3)
Min Entering mass, heater (kg/m3)
Ml,in Entering mass, liquor components, heater (m3/min)
Ms Mass solid phase (kg/m3)
Ms,in Entering mass, solid components, heater (m3/min)
Qh Heat supply heater (kJ/min)
Qlh Heat supply lower heater (kJ/min)
Quh Heat supply upper heater (kJ/min)
R Universal gas constant (kJ/molK)
Re,i Reaction rate species(e, i) (m3/min)
Rs,i Reaction rate species(s, i) (m3/min)
S Cross sectional area (m2)
Tc Wood chip temperature (K)
Tf Free liquor phase temperature (K)
Tin Temperature entering flow rate, heater (K)
Tout Temperature exiting flow rate, heater (K)
Tp Temperature used in heat transfer calculation(K)
U Heat transfer coefficient (kJ/min m3K)
b Reaction stochiometry (−)
ef Reaction rate multiplier (−)
k1,i Kinetic constant speciesi (m3/kg min)
k2,i Kinetic constant speciesi (m3/kg min)
z Location in the reactor, top = 0 (m)
∆HR Reaction enthalpy (kJ/kg)
α∞

s,i Non-reactive fraction species(s, i) (kg/m3)

β∗ Stochiometric coefficients (−)
γ Yield (−)
ε Porosity (−)
η Ratio free liquor volume - reactor volume (−)
θQ Dead time with respect toQh (min)
θφ Dead time with respect toφl (min)
κ# Kappa number (−)
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ρe,i Concentration speciesi, entrapped phase (kg/m3)
ρf,i Concentration speciesi, free liquor phase (kg/m3)
ρs,i Concentration speciesi, solid phase (kg/m3)
ρ∞s,i Non-reactive portion species(s, i) (kg/m3)

ρ̄s Density of solid material (kg/m3)
ρwater Density of water (kg/m3)
τ[input],[output] Time constant for[output] with respect to[input] (min)

φ̂b Bulk flow (m3/min)
φc Wood chip flow rate (m3/min)
φin Entering flow rate, heater (m3/min)
φl Liquor phase flow rate (m3/min)
φout Exiting flow rate, heater (m3/min)
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Figure D.1: Digester unit operation (a) and hybrid model flowsheet (b)

This appendix describes the hybrid model of the continuous pulp digester that is de-
scribed in chapter 5. The model flowsheet, section model data flow diagram and model
parameters are given.

D.1 Model flowsheet

The model flowsheet consists of a series of tubular reactors or ”sections” that are con-
nected to form the digester model. Mixers, splitters and heaters are also added. The flowsheet
is shown in figure D.1. Table D.1 shows section dimensions.

Section Height (m) Cross sectional area S (m2)
I 5.50 18.0
II 15.99 18.7
III 5.18 18.7
IV 5.33 21.1

Table D.1: Hybrid model section dimensions

211



Pulp Digester Hybrid Model

Pulp digester
section model

Entering
Wood

Entering
Liquor

φr

ρr,i,in

Tr,in

f l

r l,i,in

Tl,in

Exiting
Wood

Exiting
Liquor

f r

r r,i

Tr

f l

r l,i

Tl

Figure D.2: Hybrid model section context diagram

D.2 Section model

All model equations of the section model are listed here. Figure D.2 shows the context
diagram of the section model, while figure D.3 shows the Data Flow Diagram for the section
model. This DFD represents the physical effects that are modeled in relation to the states.

Mass balance reaction phase:

∂ρr,i

∂t
= − φr

S(1 − η)
∂ρr,i

∂z
+ Rr,i for i = 1, . . . , 3 (D.1)

∂ρr,i

∂t
= − φr

S(1 − η)
∂ρr,i

∂z
+ Rr,i + Dcr(ρl,i − 1

ε
ρr,i+3) for i = 4, . . . , 7 (D.2)

The difference between equations D.1 and D.2 is that species(r, 1) to (r, 3) cannot diffuse
to the liquor phase, while species(r, 4) to (r, 7) can. The porosityε is introduced in the
diffusion term to compensate for the lumping of the solid and entrapped phases. In the EPM,
the concentrations of species(r, 4) to (r, 7) are based on the entrapped phase volume. In the
hybrid model, they are based on the chip volume. Dividing byε corrects this. An alterna-
tive is to build a fuzzy equation that calculatesD as a function ofTr, ρl,i andρr,i+3, but
introducingε is simpler. The corrected concentration can be interpreted as an ”effective con-
centration” that determines the driving force behind the diffusion. The porosityε is defined
in equation D.13.

Mass balance liquor phase:

∂ρl,i

∂t
= − 1

Sη

∂ρl,iφl

∂z
+ Dcl(

1
ε
ρr,i+3 − ρl,i) for i = 1, . . . , 4 (D.3)

Energy balance reaction phase:

∂

∂t
(CprMrTr) = − φr

S(1 − η)
∂

∂z
(CprMrTr)

+ ∆HR

3∑
i=1

Rr,i + U(Tl − Tr) + DcrDR (D.4)
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Energy balance liquor phase:

∂

∂t
(CplMlTl) = − 1

S(ηS)
∂

∂z
(φlCplMlTl) +

1 − η

η
U(Tr − Tl) + DclDL (D.5)

Reaction rate:
Rr,i = ffuzzy(ρr,i, ρr,4, Tr) for i = 1, . . . , 3 (D.6)

Reaction stochiometry:

Rr,i =
3∑

j=1

bi,jRr,j for i = 4, . . . , 7 (D.7)

Diffusion coefficient:
Dcr = ffuzzy(Tr) (D.8)

Volumetric correction for diffusion coefficient liquor phase:

Dcl = Dcr
1 − η

η
(D.9)

Net energy transported into woodchips per volume of diffusing mass:

DR = TpCpw

2∑
i=1

(ρl,i − 1
ε
ρr,i+3) + TpCps

4∑
i=3

(ρl,i − 1
ε
ρr,i+3) (D.10)

in which

Tp =
{

Tl if ρl,i > ρr,i

Tr if ρl,i < ρr,i
(D.11)

DL = −DR (D.12)

Porosity:

ε = 1 −
∑3

i=1 ρr,i

ρ̄s
=

Ve

Vc
(D.13)

Heat capacity reaction phase:

Cpr = Cpw
Mrl

Mr
+ Cps

Mrr

Mr
(D.14)

Total density reaction phase
Mr = Mrl + Mrr (D.15)
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with

Mrr =
3∑

i=1

ρr,i +
7∑

i=6

ρr,i (D.16)

and

Mrl = ρwater +
5∑

i=4

ρr,i (D.17)

Heat capacity liquor phase:

Cpl = Cpw
Mll

Ml
+ Cps

Mlr

Ml
(D.18)

Total density liquor phase
Ml = Mll + Mlr (D.19)

with

Mll = ρwater +
2∑

i=1

ρl,i (D.20)

and

Mlr =
4∑

i=3

ρl,i (D.21)

Kappa number:

κ# =
ρr,1 + ρr,2

0.00153
∑3

i=1 ρr,i

(D.22)

Yield:

γ =
∑3

i=1 ρr,i,exiting∑3
i=1 ρr,i,entering

(D.23)

D.3 Fuzzy models

The hybrid model of the pulp digester contains four fuzzy models:

Rr,i = ffuzzy(ρr,i, ρr,4, Tr) for i = 1 . . . 3 (D.24)

Dcr = ffuzzy(Tr) (D.25)

The models were identified with GK-clustering in combination with structure optimization.
The weights of the rules were determined in the submodel integration step. Clustering settings
and modeling results are shown in table D.2. Using the input-output data that was generated
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with the EPM, this results in the fuzzy models given below. The premise part membership
functions are given in figures D.4 to D.7.

IF ρr,1 = mfi AND ρr,4 = mfi AND Tr = mfi

THEN Rr,1 = w
Rr,1
i yi for i = 1, . . . , 4 (D.26)

in which
yi = p

Rr,1
i,1 ρr,1 + p

Rr,1
i,2 ρr,4 + p

Rr,1
i,3 Tr + p

Rr,1
i,4 (D.27)

with

pRr,1 =




−0.0088 −0.0011 −0.0002 0.0933
−0.0252 −0.0019 −0.0011 0.5478
0.0004 −0.0059 −0.0029 1.1060
−0.0233 −0.0065 −0.0060 2.7791


 wRr,1 =




1
1
1
1


 (D.28)

IF ρr,2 = mfi AND ρr,4 = mfi AND Tr = mfi

THEN Rr,2 = w
Rr,2
i yi for i = 1, . . . , 6 (D.29)

in which
yi = p

Rr,2
i,1 ρr,2 + p

Rr,2
i,2 ρr,4 + p

Rr,2
i,3 Tr + p

Rr,2
i,4 (D.30)

with

pRr,2 =




−0.0291 −0.0154 −0.0220 9.8500
0.0238 −0.0022 −0.0116 2.1300
−0.0185 −0.0367 −0.1045 45.7436
−0.0092 −0.0085 −0.0385 16.2819
−0.0003 −0.0042 −0.0001 0.0000
−0.0307 −0.0235 −0.0585 26.2124




wRr,2 =




0.73
0.93
0.47
1.19
1.14
1.70




(D.31)

IF ρr,3 = mfi AND ρr,4 = mfi AND Tr = mfi

THEN Rr,3 = w
Rr,3
i yi for i = 1, . . . , 6 (D.32)

in which
yi = p

Rr,3
i,1 ρr,3 + p

Rr,3
i,2 ρr,4 + p

Rr,3
i,3 Tr + p

Rr,3
i,4 (D.33)

with

pRr,3 =




−0.0111 −0.0245 −0.0813 38.2907
−0.0132 −0.0364 −0.0909 43.4828
−0.0052 −0.0227 −0.0208 10.5408
−0.0026 −0.0114 −0.0128 6.0335
−0.0002 −0.0041 −0.0011 0.4765
−0.0083 −0.0154 −0.0546 25.5889




wRr,3 =




0.99
1.38
1.04
1.95
1.25
1.12




(D.34)
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Fuzzy model Inputs γdr # data features k0 γcm # rules RMSE

Rr,1 ρr,1, ρr,4, Tr 2 179 10 0.7 4 0.024
Rr,2 ρr,2, ρr,4, Tr 1 333 10 0.7 6 0.14
Rr,3 ρr,3, ρr,4, Tr 5 198 10 0.7 6 0.12
Dcr Tr 1 36 5 0.2 2 0.026

Table D.2: Fuzzy model identification settings and results

IF Tr = mfi THEN Dcr = wDcr

i yi for i = 1, . . . , 2 (D.35)

in which
yi = pDcr

i,1 Tr + pDcr

i,2 (D.36)

with

pDcr =
[

0.0014 −0.5092
0.0062 −2.3676

]
wDcr =

[
1
1

]
(D.37)
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Figure D.4: Premise part membership functions fuzzy model Rr,1
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400 420 440
0

0.2

0.4

0.6

0.8

1

1.2

T
r

µ

mf1 mf2

Figure D.7: Premise part membership functions fuzzy model Dcr

219



Pulp Digester Hybrid Model

Softwood Hardwood
βOHL .166 kg OH/kg lignin 0.21 kg OH/kg lignin
βOHC 0.395 kg OH/kg carbohydrate 0.49 kg OH/kg carbohydrate

Table D.3: Stochiometric coefficients

D.4 Heater model

In the hybrid model, the EPM upper and lower heater are lumped to form a ”preheater”.
To make comparisons between the two models, the preheater has to provide the same amount
of energy as the upper and lower heater do. The resulting outlet temperature depends on this
energy, the composition of the flow and the flow rate. Therefore, in the hybrid model, the
heaters are modeled using a simple static energy balance. The heater model can be described
as follows:

φout = φin (D.38)

Qh = φinCpinMin(Tout − Tin) (D.39)

Min = Ml,in + Mr,in (D.40)

in which

Ml,in = ρwater +
2∑

i=1

ρl,i,in (D.41)

and

Mr,in =
4∑

i=3

ρl,i,in (D.42)

Cpin = Cpw
Ml,in

Min
+ Cps

Mr,in

Min
(D.43)

D.5 Typical operating values and parameters

The stochiometric matrixb which links the reaction rates of the reaction phase compo-
nents to the reaction rates of the liquor phase components can be derived from equation C.35.
Lumping species(s, 3) to (s, 5) corresponds with removing columns 4 and 5 fromb and
lumping species(e, 1) and (e, 3) corresponds with summing rows 1 and 3 ofb. For the
reaction products, rows 2 and 3 also have to be summed. This results in:

b =

[
βOHL βOHL βOHC

−βOHL −βOHL −βOHC

−1 −1 0
0 0 −1

]
(D.44)

The stochiometric coefficients for the consumption of Effective Alkali and Hydrosulfide are
stated in table D.3. Tables D.4 through D.5 show various other model parameters.
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Parameter Value Definition
φr 1.3964 m3/min reaction phase (woodchip) flow rate
φl,in 2.3497 m3/min entering white liquor flow rate
Qh 627099 kJ/min Preheater energy input
φquench 0 m3/min quench recirculation flow rate
Twash 365.133 K wash heater temperature
φfilt 1.6312 m3/min entering filtrate flow rate
Tfilt 360.93 K entering filtrate temperature
Tr,in 395 K entering woodchip temperature
Tl,in 382 K entering white liquor temperature
ρr,1,in 25.37 kg/m3 high reactivity lignin density

of entering woodchip (reaction phase)
ρr,2,in 101.49 kg/m3 low reactivity lignin density

of entering woodchip (reaction phase)
ρr,3,in 411.56 kg/m3 carbohydrates density of entering woodchip
ρr,4,in 0.02 kg/m3 active liquor concentration in entering reaction phase
ρr,5,in 0.02 kg/m3 passive liquor concentration in entering reaction phase
ρr,6,in 0.01 kg/m3 dissolved lignin concentration in entering reaction phase
ρr,7,in 0.01 kg/m3 dissolved carbohydrates concentration

in entering reaction phase
ρl,1,in 92.1 kg/m3 active liquor concentration

of entering white liquor flow
ρl,2,in 0 kg/m3 passive liquor concentration

of entering white liquor flow
ρl,3,in 59.6 kg/m3 dissolved lignin concentration

of entering white liquor flow
ρl,4,in 59.6 kg/m3 dissolved carbohydrates concentration

of entering white liquor flow
ρf,1,filtr 4.8055 kg/m3 active liquor concentration

of entering filtrate flow
ρf,2,filtr 0.02 kg/m3 passive liquor concentration

of entering filtrate flow
ρf,5,filtr 45 kg/m3 dissolved lignin concentration

of entering filtrate flow
ρf,6,filtr 45 kg/m3 dissolved carbohydrates concentration

of entering filtrate flow

Table D.4: Standard operating parameters

Parameter Value Definition
ρ̄s 1666 kg/m3 density of solid wood material
ρwater 999 kg/m3 density of water
∆HR -518 kJ/kg heat of reaction
Cpw 4.19 kJ/(kg K) heat capacity liquor
Cps 1.47 kJ/(kg K) heat capacity wood substance
U 827 kJ/(min m3 K) heat transfer coefficient

Table D.5: Digester unit operation parameters
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Model Input O[input],κ O[input],γ τ[input],κ τ[input],γ θ[input] ∆κ# (−) ∆γ (−)
(min (min (min)

EPM Qlh 2.3 2.3 42 43 87 -5.51, 6.17 -0.022, 0.022
φf 2.9 3.3 35 35 113 4.71, -4.06 0.019, -0.020

Hybrid Qlh 1.8 1.9 40 45 84 -5.77, 6.40 -0.018, 0.018
model φf 2.4 2.7 34 34 109 4.23, -3.69 0.014, -0.013

Table D.6: Frequency response analysis results for hybrid model

The implemented compaction profile is based upon (Wisnewskiet al., 1997), who uses dif-
ferent, fixed compaction values for each CSTR. In the PFR approach for the hybrid model,
compaction is neglected. The ratio of the volume of the liquor phase and the volume of the
reactorη is assumed to be constant. This means that the volumes of the reaction phase and
the liquor phase do not change.

η = 0.54 (D.45)

D.6 Frequency analysis

Figures D.8-D.11 show the Bode diagrams for the Kappa number and the yield as a
function of the lower heater heat outputQlh and the liquor flow rateφf . Table D.6 shows the
frequency analysis results; the gains∆κ# and∆γ are the gains for steps inQlh andφl. The
steps size of the steps inφl was 7 %. The step size of the steps inQh was equivalent with
a 10 % change in lower heater heat outputQlh of the EPM. The gains for a positive and a
negative step are presented. In the table,O denotes the order of the system response,τ the
time constant andθ the dead time.
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Figure D.10: Bode diagram κ# as a function of φf . Dots EPM, line hybrid model.
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D.7 Notation

Cpl Heat capacity, liquor phase (kJ/kg K)
Cpr Heat capacity, reaction phase (kJ/kg K)
Cpw Heat capacity, liquor (kJ/kg K)
DR Energy transported into wood chip (kJ/m3)
DL Energy transported into liquor phase (kJ/m3)
Dcr Diffusion coefficient, reaction phase (min−1)
Dcl Diffusion coefficient, liquor phase (min−1)
Mrl Mass liquor components, reaction phase (kg/m3)
Mrr Mass reaction phase components, reaction phase(kg/m3)
Ml Mass liquor phase (kg/m3)
Mll Mass liquor components, liquor phase (kg/m3)
Mlr Mass reaction phase components, liquor phase (kg/m3)
Min Entering mass, heater (kg/m3)
Ml,in Entering mass, liquor components, heater (m3/min)
Mr Mass reaction phase (kg/m3)
Mr,in Entering mass, reaction phase components, heater(m3/min)
Qh Heat supply heater (kJ/min)
Rr,i Reaction rate species(r, i) (m3/min)
S Cross sectional area (m2)
Tr Reaction phase temperature (K)
Tl Liquor phase temperature (K)
Tin Temperature entering flow rate, heater (K)
Tout Temperature exiting flow rate, heater (K)
Tp Temperature used in heat transfer calculation (K)
U Heat transfer coefficient (kJ/min m3 K)
b Reaction stochiometry (−)
z Location in the reactor, top = 0 (m)

p[∗] Consequent part parameters fuzzy models
w[∗] Rule weights fuzzy models
∆HR Reaction enthalpy (kJ/kg)
β∗ Stochiometric coefficients (−)
γ Yield (−)
ε Porosity (−)
η Ratio liquor volume - reactor volume (−)
θQ Dead time with respect toQh (min)
θφ Dead time with respect toφl (min)
κ# Kappa number (−)
ρl,i Concentration speciesi, liquor phase (kg/m3)
ρr,i Concentration speciesi, reaction phase (kg/m3)
ρ̄s Density of solid material (kg/m3)
ρwater Density of water (kg/m3)
τ[input],[output] Time constant for[output] with respect to[input] (min)
φr Reaction phase flow rate (m3/min)
φin Entering flow rate, heater (m3/min)
φl Liquor phase flow rate (m3/min)
φout Exiting flow rate, heater (m3/min)
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Figure E.1: Hybrid model section context diagram

This appendix describes the dynamic fuzzy model of the pulp digester. The fuzzy models,
identification and validation data and the frequency analysis are presented.

E.1 Fuzzy models

The fuzzy model of the pulp digester describes the Kappa number (κ#) and the yield (γ)
at the reactor outlet as a function of the heat supplyQh and the liquor flowφl by using two
second order MISO models. Figure E.1 shows the context diagram of the complete model.
Since the fuzzy model of the digester only consists of two fuzzy equations, no DFD was
constructed.

The model equation structure is as follows:

κ#k = ffuzzy(κ#k−1, κ#k−2, Qk−θQ , φl,k−θl
) (E.1)

γk = ffuzzy(γk−1, γk−2, Qk−θQ , φl,k−θl
) (E.2)

in whichk denotes the time step andθQ andθl denote the dead times with respect toQh and
φl.

The models were identified with GK-clustering in combination with structure optimization.
Clustering settings and model results are shown in table E.1. This results in the following
fuzzy models:

IF κ#k−1 = mfi AND κ#k−2 = mfi AND Qh,k−θQ = mfi
AND φl,k−θφ

= mfi THEN κ#k = yi for i = 1, . . . , 3 (E.3)

in which

yi = pκ
i,1κ#k−1 + pκ

i,2κ#k−2 + pκ
i,3Qh,k−θQ + pκ

i,4φl,k−θφ
+ pκ

i,5 (E.4)

with

pκ =


 1.98 −0.98 −0.0046 0.0070 0.0230

1.98 −0.98 −0.0058 0.0067 0.0293
1.98 −0.98 −0.0068 0.0098 0.0303


 (E.5)
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Model θQ (min) θφ (min) k0 γcm # rules
κ# 87 113 6 0.7 3
γ 87 113 6 0.4 5

Table E.1: Settings and structure results fuzzy model

and

IF γk−1 = mfi AND γk−2 = mfi AND Qh,k−θQ = mfi
AND φl,k−θφ

= mfi THEN γk = yi for i = 1, . . . , 5 (E.6)

in which

yi = pγ
i,1κ#k−1 + pγ

i,2κ#k−2 + pγ
i,3Qh,k−θQ + pγ

i,4φl,k−θφ
+ pγ

i,5 (E.7)

with

pγ =




1.98 −0.98 −0.000016 0.000020 0.000192
1.98 −0.97 −0.000017 0.000026 0.000206
1.98 −0.97 −0.000017 0.000023 0.000236
1.98 −0.97 −0.000026 0.000037 0.000342
1.98 −0.98 −0.000016 0.000034 0.000190


 (E.8)

The membership functions for the two fuzzy MISO models are presented in figures E.2 and
E.2
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Figure E.2: Premise part membership functions MISO model κ#
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Figure E.3: Premise part membership functions MISO model γ
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E.2 Identification and validation data sets

The identification and validation data sets were generated with the EPM using ramped-
RMRI signals forQh (which consisted of the summed ramped-RMRI signals that for the
lower heater heat outputQlh and the upper heater heat outputQuh) and the liquor flow rate
φf . The identification data set is shown in figure E.4, the validation data set is shown in
figure E.5. The value ofQh is divided by a factor of1e5 to prevent membership function
evaluation problems.
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Figure E.4: Identification data for Qh (a), φl (b), κ# (c) and γ (d)
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Figure E.5: Validation data for Qh (a), φl (b), κ# (c) and γ (d)
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Pulp Digester Fuzzy Model

Model Input O[input],κ O[input],γ τ[input],κ τ[input],γ θ[input] ∆κ# (−) ∆γ (−)
(min) (min) (min)

EPM Qlh 2.3 2.3 42 43 87 -5.51, 6.17 -0.022, 0.022
φf 2.9 3.3 35 35 113 4.71, -4.06 0.019, -0.020

Fuzzy Qh 2.1 2.0 52 58 87 -4.54, 4.98 -0.018, 0.022
model φl 2.0 2.0 50 50 113 3.70, -3.68 0.019, -0.020

Table E.2: Frequency response analysis results for EPM

E.3 Frequency analysis

Figures E.6-E.9 show the Bode diagrams for the Kappa number and the yield as a func-
tion of the lower heater heat outputQlh and the liquor flow rateφf . Table E.2 shows the
frequency analysis results; the gains∆κ# and∆γ are the gains for steps inQlh andφl. The
steps size of the steps inφl was 7 %. The step size of the steps inQh was equivalent with
a 10 % change in lower heater heat outputQlh of the EPM. The gains for a positive and a
negative step are presented. In the table,O denotes the order of the system response,τ the
time constant andθ the dead time.
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Figure E.9: Bode diagram γ as a function of φf . Dots EPM, line fuzzy model.

E.4 Notation

Qh Heat supply heater (kJ/min)

p[∗] Consequent part parameters fuzzy models
w[∗] Rule weights fuzzy models
γ Yield (−)
θQ Dead time with respect toQh (min)
θφ Dead time with respect toφl (min)
κ# Kappa number (−)
τ[input],[output] Time constant for[output] with respect to[input] (min)
φl Liquor phase flow rate (m3/min)

238



F

Distillation column hybrid models





Parameter Value Definition
τV 0.2 h Column heating time constant
LV,0 120 mol/h Initial vapor flow
LV,ss 166 mol/h Steady state vapor flow approximation
x0

n+1,sp 0.986 − Product quality for which the model is valid

Table F.1: Simplified overall static hybrid model parameters

This appendix describes the simplified overall static and dynamic hybrid models. The
data flow diagram and model parameters are given. In addition, the performance of the fuzzy
submodel is presented.

F.1 Simplified overall static model

F.1.1 Model equations

The simplified overall static hybrid model is given by the following set of equations:

dMcol

dt
= −LV (1 − R∗) (F.1)

Mcol
dxcol

dt
= −LV (1 − R∗)(x0

n+1 − xcol) (F.2)

dLV

dt
=

1
τV

(LV,ss − LV ) (F.3)

x0
n+1 = ffuzzy(R∗, xcol, LV ) (F.4)

Mp = Mcol,0 − Mcol (F.5)

Model parameters are given in table F.1. Figure F.1 shows the DFD of the model.

F.1.2 Fuzzy submodel

The premise part membership functions of the fuzzy submodel forx0
n+1 are given in

figure F.2. The model can be represented as follows:

IF R∗ = mfi AND xcol = mfi AND LV = mfi

THEN x0
n+1 = w

x0
n+1

i yi for i = 1, . . . , 3 (F.6)

in which
yi = p

x0
n+1

i,1 R∗ + p
x0

n+1
i,2 xcol + p

x0
n+1

i,3 LV + p
x0

n+1
i,4 (F.7)
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Figure F.2: Premise part membership functions fuzzy model x0
n+1

with

px0
n+1 =


 −0.0034 0.0023 −0.0000 0.9914

−0.0315 0.0083 0.0002 0.9824
−0.0056 −0.0022 −0.0000 0.9925


 wx0

n+1 =


 1

1
1


 (F.8)

F.1.3 Fuzzy model performance

The performance of the fuzzy submodel forx0
n+1 with respect to the identification data

is given in figure F.3.
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Parameter Value Definition
τV 0.2 h Column heating time constant
LV,0 120 mol/h Initial vapor flow
LV,ss 166 mol/h Steady state vapor flow approximation
x0

n+1,sp 0.986 − Product quality for which the model is valid
τx 0.42 h Dominant column time constant

Table F.2: Simplified overall dynamic hybrid model parameters

F.2 Simplified overall dynamic model

F.2.1 Model equations

The simplified overall dynamic hybrid model is given by the following set of equations:

dMcol

dt
= −LV (1 − R∗) (F.9)

Mcol
dxcol

dt
= −LV (1 − R∗)(x0

n+1 − xcol) (F.10)

dLV

dt
=

1
τV

(LV,ss − LV ) (F.11)

dx0
n+1

dt
=

1
τx

(x∗ − x0
n+1) (F.12)

x∗ = ffuzzy(R∗, xcol, LV ) (F.13)

Mp = Mcol,0 − Mcol (F.14)

Model parameters are given in table F.2. Figure F.4 shows the DFD of the model.

F.2.2 Fuzzy submodel

The premise part membership functions of the fuzzy submodel forx∗ are given in fig-
ure F.5. The model can be represented as follows:

IF R∗ = mfi AND xcol = mfi AND LV = mfi

THEN x∗ = w
x0

n+1
i yi for i = 1, . . . , 3 (F.15)

in which
yi = px∗

i,1R
∗ + px∗

i,2xcol + px∗
i,3LV + px∗

i,4 (F.16)

with

px∗
=


 0.0250 0.0182 −0.0001 0.9767

0.0582 −0.0477 0.0003 0.9151
0.0194 0.0147 0.0000 0.9613


 wx∗

=


 1

1
1


 (F.17)
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F.2.3 Fuzzy model performance

The performance of the fuzzy submodel forx∗ with respect to the identification data is
given in figure F.6.

F.3 Notation

LV Vapor flow after condensation (mol/h)
LV,ss Pseudo steady state vapor flow (mol/h)
Mcol Total mass column contents (mol)
Mp Product (mol)
R∗ Reflux fraction (−)

p[∗] Consequent part parameters fuzzy models
w[∗] Rule weights fuzzy models
x∗ Product quality forcing function (−)
xcol Fraction volatile component in the column (−)
x0

n+1 Fraction volatile component in product (−)
τV Time constant characterizing column heating(h)
τx Dominant time constant (h)
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Summary

Dynamic process modeling in chemical engineering is often based on a combination of
first principles and empirical relations. These models are interpretable, in the sense that,
by analyzing the model, there is a physical understanding of the process behavior. Many
process models consist of a framework of mass, component and energy balances describing
the essential process accumulation. Within this framework, phenomena such as chemical
reaction or mass transfer can be described by static empirical relations. However, for many
processes, information about - or understanding of - these phenomena can be limited. In
addition, the behavior can be complex. This may result in difficulties during the derivation of
empirical relations.

Hybrid fuzzy-first principles models can be a useful alternative in these situations. By com-
bining fuzzy logic submodels with a physical model framework, hybrid fuzzy-first principles
models are obtained that combine a high level of interpretability with the ability to deal
with complex behavior. Hybrid fuzzy-first principles models are especially suited to describe
highly nonlinear behavior over a large operating domain. Examples are models of batch or
fed-batch processes, cyclic processes or distributed parameter processes, such as plug flow
reactors.

This work deals with the development and analysis of hybrid fuzzy-first principles models. A
model structure is proposed in which hybrid models consist of a framework of dynamic mass
and energy balances, formulated in state-space form, supplemented with algebraic and fuzzy
equations. The fuzzy equations describe physical phenomena that are poorly understood or
difficult to model using first principles. The proposed structure guarantees a certain level of
transparency, since internal variables and their behavior can be interpreted. The quality of hy-
brid models is assessed by evaluating dynamic performance, static performance, complexity,
interpretability and process independence.

The main sources of information during hybrid model development are first principles, pro-
cess data and human expertise. First principles are used to derive the model structure. Al-
though fuzzy logic is extremely suitable to quantify expert knowledge, it is often difficult to
integrate this knowledge in a predefined hybrid model structure. Therefore, expert knowl-
edge is only used to provide structural information. Process data is used to determine model
parameters and identify the fuzzy equations.

The type of fuzzy model which is used is the Takagi-Sugeno-Kang (TSK) type. This type
can be interpreted as a collection of local linear models. TSK fuzzy models are extremely
suitable for describing highly nonlinear relations. Although linguistic fuzzy models can be
interpreted better by humans, they require a more complex structure to describe a relation
than TSK models. The advantage of using TSK type fuzzy models is reduced complexity in
combination with structural transparency.

For the development of hybrid models, a structured modeling approach is presented. This
approach consists of several independent steps, divided into three phases. In the first phase,
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the model objective and quality requirements are formulated. The second phase involves
the design of the model. In the design phase, the modeling problem is divided into several
smaller problems, which can be solved sequentially: structure design, behavior estimation,
identification and optimization. In the third phase, the hybrid model is evaluated with respect
to the model requirements.

The hybrid model structure is determined by formulating process behavior hypotheses. These
hypotheses describe the essential characteristics of the process behavior. Based on these
hypotheses, basic model equations can be derived. In addition, the phenomena that will be
described with fuzzy logic are distinguished.

Subsequently, the process data required for identification is obtained. Most fuzzy model
identification techniques require input-output data. To acquire input-output data, appropriate
experiments need to be designed. Estimation techniques can be used to estimate behavior
which is not directly measurable. For this purpose, Kalman filtering and PI-estimation were
compared. The PI-estimator is structurally similar to a PI feedback controller. Its perfor-
mance matches the Kalman filter, but the PI-estimator is easier to set up.

Three different approaches for the identification of fuzzy models were compared: fuzzy
clustering, which searches for linear subspaces in data, genetic algorithms, a probabilistic
optimization technique which can be used to determine fuzzy model parameters and neuro-
fuzzy methods, in which the fuzzy model is interpreted as an artificial neural network. All
approaches yielded acceptable results. However, fuzzy clustering was preferred, since it re-
quires less a priori structure information. This makes the approach useful in situations where
little information about the modeled phenomenon is available.

The hybrid model is formed by combination of the fuzzy models and the physical model
framework. Since the fuzzy models are identified individually, it may be necessary to opti-
mize the fuzzy model parameters with respect to the model output in order to improve the
overall hybrid model performance. The best results are obtained if the optimization is fo-
cused on the consequent parameters of the fuzzy model; these are the parameters of the local
linear models. The number of parameters to be optimized can be reduced by optimizing rule
or model weights.

The modeling approach was illustrated using three different cases. A simple simulated fed-
batch reactor was used for the development of the approach. To analyze hybrid model prop-
erties, a hybrid model of a simulated continuous pulp digester was built and compared with
a first principles model and a fuzzy model. A batch distillation column was used to illustrate
hybrid modeling of an experimental setup.

The hybrid models have shown that the use of fuzzy logic in hybrid modeling introduces
flexibility, which enables the description of complex behavior with a predefined, interpretable
overall model structure. This is accomplished since the fuzzy submodels describe complex
behavior in a transparent way without the need for an a priori fuzzy model structure. The
need for such a structure would reduce flexibility. The result of this flexibility is that hybrid
fuzzy-first principles models can match the desired behavior if the model structure represents
the essential dynamic characteristics of the process.
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Since process dynamics are modeled with a similar structure, dynamic performance, com-
plexity and interpretability of hybrid models and first principles models are comparable. With
respect to static performance and process independence, hybrid models are more comparable
with fuzzy models. Depending on the number of fuzzy equations, the static performance of
the hybrid model is based on observed behavior, similar to fuzzy models. The fuzzy equa-
tions in hybrid models are data driven, which imposes a level of process dependence. The
fuzzy models are valid in the operating regime that is represented by the identification data.
The first principles part can only partly compensate for limited validity of the fuzzy models
outside this operating regime.

The result is that hybrid fuzzy-first principles models are useful in applications which fo-
cus on a specific installation and require dynamic models that are transparent and provide a
general explanation of the process behavior.
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Samenvatting

Binnen de chemische technologie is dynamisch modelleren vaak gebaseerd op een com-
binatie van fysische principes en empirische relaties. Deze modellen zijn interpreteerbaar:
door het model te analyseren kan fysisch begrip verkregen worden van het gedrag van het
model. Veel modellen bestaan uit een raamwerk van massa-, energie- en componentbalansen
die de essenti¨ele processaccumulatie beschrijven. Binnen dit raamwerk kunnen verschijnse-
len zoals chemische reactie en stofoverdracht beschreven worden met empirische relaties.
Echter, voor veel processen kan informatie over - of inzicht in - deze verschijnselen beperkt
zijn. Daarnaast kan het gedrag van het proces complex zijn, wat kan leiden tot moeilijkheden
bij het opstellen van empirische relaties.

Hybride fuzzy/fysische modellen kunnen in deze situaties een bruikbaar alternatief zijn. Door
fuzzy submodellen te combineren met een fysisch raamwerk worden hybride fuzzy/fysische
modellen verkregen die een hoge mate van interpreteerbaarheid combineren met de mogelijk-
heid om complex gedrag te beschrijven. Hybride fuzzy/fysische modellen zijn in het bijzon-
der geschikt om niet-lineair gedrag binnen een groot operatiedomein te beschrijven. Voor-
beelden zijn batchprocessen, cyclische processen of gedistribueerde parameter-processen,
zoals buisreactoren.

Dit werk behandelt het ontwerp en analyse van de hybride fuzzy/fysische modellen. Een mo-
delstructuur zal voorgesteld worden, waarin hybride modellen bestaan uit een raamwerk van
dynamische massa- en energiebalansen, geformuleerd in de vorm van toestandsvergelijkin-
gen, aangevuld met algebra¨ısche en fuzzy vergelijkingen. De fuzzy vergelijkingen beschri-
jven fysische verschijnselen die slecht begrepen worden of moeilijk op grond van fysische
principes te modelleren zijn. De voorgestelde structuur garandeert een bepaalde transparantie
omdat interne variabelen en hun gedrag ge¨ınterpreteerd kunnen worden. De kwaliteit van hy-
bride modellen wordt bepaald door de dynamische en statische prestatie, de complexiteit, de
interpreteerbaarheid en procesonafhankelijkheid in kaart te brengen.

De belangrijkste bronnen van informatie voor de bouw van hybride modellen zijn fysische
principes, procesdata en menselijke expertise. Fysische principes worden gebruikt om de
modelstructuur te bepalen. Hoewel fuzzy logic uitermate geschikt is om expertkennis te
kwantificeren, is het vaak moeilijk deze kennis in een vastgelegde modelstructuur te integre-
ren. Daarom wordt expertkennis slechts gebruikt om modelstructuren aan te geven. Proces-
data wordt gebruikt om modelparameters en de fuzzy submodellen te bepalen.

Het type fuzzy modellen dat gebruikt wordt is het Takagi-Sugeno-Kang (TSK) type. Dit
type kan ge¨ınterpreteerd worden als een verzameling van lokale lineaire modellen. TSK
fuzzy modellen zijn uitermate geschikt om hoog niet-lineair gedrag te beschrijven. Hoewel
linguı̈stische fuzzy modellen beter door mensen ge¨ınterpreteerd kunnen worden, is er een
meer complexe structuur nodig om een relatie te beschrijven dan bij gebruik van TSK fuzzy
modellen. Het voordeel van het gebruik van TSK modellen is gereduceerde complexiteit in
combinatie met een transparante structuur.



Samenvatting

Voor de ontwikkeling van hybride modellen is een gestructureerde modelleringsaanpak ge-
presenteerd. Deze aanpak bestaat uit verschillende onafhankelijke stappen, verdeeld over 3
fasen. In de eerste fase worden de modeldoelstelling en kwaliteitseisen geformuleerd. De
tweede fase betreft het ontwerp van het model. Het model wordt ge¨evalueerd in de derde fase
in relatie tot de kwaliteitseisen.

De structuur van het hybride model wordt bepaald door gedragshypothesen te formuleren.
Deze hypothesen beschrijven de essenti¨ele karakteristieken van het procesgedrag. Uitgaande
van deze hypothesen kunnen de basisvergelijkingen van het model afgeleid worden. Tevens
worden de verschijnselen die met behulp van fuzzy logic beschreven worden onderscheiden.

Vervolgens wordt de benodigde procesdata vergaard. De meeste identificatietechnieken voor
fuzzy modellen hebben ingangs- en uitgangsdata nodig. Om de data te verkrijgen moeten
geschikte procesexperimenten ontworpen worden. Daarnaast kunnen schattingstechnieken
gebruikt worden om gedrag te schatten dat niet direct meetbaar is. Voor deze toepassing zijn
het Kalman filter en de PI-schatter vergeleken. De PI-schatter is structureel gezien verge-
lijkbaar met een PI-regelaar. De prestatie is vergelijkbaar met het Kalman filter, maar de
PI-schatter is veel makkelijker op te stellen.

Voor de identificatie van de fuzzy submodellen zijn drie verschillende technieken vergeleken:
fuzzy clustering, waarbij gezocht wordt naar lineaire subruimten, genetische algoritmen, een
probabilistische optimalisatietechniek die gebruikt kan worden voor het bepalen van de pa-
rameters van een fuzzy model, en neurofuzzy methoden, waarbij het fuzzy model beschouwd
wordt als een neuraal netwerk. Alle technieken leverde acceptabele resultaten. Echter, de
voorkeur gaat uit naar fuzzy clustering omdat deze techniek minder a priori informatie over
de structuur van het fuzzy model nodig heeft. Dit maakt de aanpak geschikt in situaties waar
weinig informatie over het te modelleren fenomeen beschikbaar is.

Door de fuzzy modellen en het fysische raamwerk te combineren ontstaat het hybride model.
Omdat de fuzzy modellen afzonderlijk bepaald worden, kan het nodig zijn om de parame-
ters van de fuzzy modellen te optimaliseren om de prestatie van het hybride model te ver-
beteren. De beste resultaten worden bereikt als de DAN-parameters van de fuzzy modellen
geoptimaliseerd worden; dit zijn de parameters van de lokale lineaire modellen. Het aantal
parameters dat geoptimaliseerd moet worden kan gereduceerd worden door regel- of model-
gewichten te optimaliseren.

De modelleringsaanpak is ge¨ıllustreerd op drie verschillende processen. Een simpele gesi-
muleerde fed-batch reactor is gebruikt voor de ontwikkeling van de aanpak. Voor de analyse
van de eigenschappen van hybride modellen is een hybride model van een (gesimuleerde)
continue houtverpulper gebouwd. Dit model is vergeleken met een fysisch model en een
fuzzy model. Tenslotte is een batchdestillatiekolom gebruikt om hybride modellering van
een experimentele opstelling te illustreren.

De hybride modellen hebben aangetoond dat het gebruik van fuzzy logic voor hybride mo-
delleren flexibiliteit introduceert, zodat beschrijving van complex gedrag met een vooraf ge-
definieerde, interpreteerbare modelstructuur mogelijk wordt. Dit wordt bereikt doordat de
fuzzy submodellen complex gedrag op een transparante manier beschrijven, zonder dat voor
de fuzzy modellen een a priori modelstructuur vastgelegd dient te worden. Dit zou de flexi-
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biliteit verminderen. Het resultaat van de flexibiliteit is dat hybride fuzzy/fysische modellen
het gewenste gedrag kunnen beschrijven mits de modelstructuur de essenti¨ele dynamische
karakteristieken van het proces representeert.

Omdat de dynamica binnen fysische en fuzzy modellen op dezelfde manier beschreven wordt,
zijn de dynamische prestatie, complexiteit en interpreteerbaarheid van deze modellen verge-
lijkbaar. Voor wat betreft statische prestatie en procesonafhankelijkheid zijn hybride model-
len meer vergelijkbaar met fuzzy modellen. Afhankelijk van het aantal fuzzy submodellen
is de statische prestatie van hybride modellen gebaseerd op het waargenomen gedrag, verge-
lijkbaar met fuzzy modellen. De fuzzy elementen van hybride modellen zijn gebaseerd op
procesdata, wat een mate van procesafhankelijkheid oplegt. De fuzzy submodellen zijn geldig
in het operatiedomein dat de procesdata representeert. Het fysische gedeelte kan slechts
gedeeltelijk compenseren voor beperkte geldigheid buiten dit domein.

Het resultaat is dat hybride fuzzy/fysische modellen geschikt zijn voor toepassingen die zich
richten op een specifieke installatie en waarbij behoefte is aan dynamische modellen die
transparant zijn en een algemene uitleg van het gedrag geven.
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Dankwoord

Zo’n promotieproject is een hele onderneming. Het proefschrift dat er nu ligt had niet
tot stand kunnen komen als ik niet bijgestaan was door een groep enthousiaste mensen, die
ik dan ook graag wil bedanken.

Brian Roffel en Ben Betlem hebben mij tijdens het project begeleid. Brian, het idee voor
het project kwam van jou. Al tijdens de beginperiode van mijn afstudeeropdracht wist je me
warm te maken voor onderzoek en jij hebt me al snel de kans gegeven het project verder
vorm te geven. Jouw pragmatische insteek en resultaatgericht denken hebben vele obstakels
uit de weg geholpen en tot een aantal leuke resultaten geleid. Ben, jij was meer de filosoof
en de discussies met jou zijn van groot belang geweest voor het bepalen van de richting. Het
”afdwalen” tijdens onze gesprekken zorgde ervoor dat veel onderwerpen in een goede context
geplaatst konden worden, ookal kwamen we vaak weer ”terug bij af.”

Het proefschrift had er nooit kunnen liggen zonder het vele werk dat verzet is door de grote
groep afstudeerders. Naar onderwerp waren dit: Pieter Jansen van der Sligte (vastleggen
ervaringskennis), Peter Deurenberg (TN, verwerking ervaringskennis), Henri Witteveen (pa-
rameterschatting, maar ook een jaar lang collega en geduchte tegenstander bij squash!), Coen
Noppert (genetische algorithmen), Y¨ucel Kök (Rijksuniversiteit Groningen, neurofuzzy sys-
temen), Freek Stoffelen (TN, submodel integratie, de Pot van Freek), Maarten Jansen (model-
eigenschappen), Simone Bijl (modeleigenschappen) en Barry Meddeler (modeleigenschap-
pen). Jammergenoeg is het werk van Tobias op den Brouw niet direct in het proefschrift
opgenomen. Tobias, hoewel de AWZI geen geschikte case voor het project bleek, heeft jou
werk wel meer inzicht gegeven in de (on)mogelijkheden van het gebruik van industri¨ele data
en is op deze manier waardevol geweest voor het bepalen van de toepassingsmogelijkheden
van hybride modelleren. Jongens, de verschillende onderwerpen hadden nooit behandeld
kunnen worden zonder jullie inzet. Het werken met jullie heb ik altijd een van de mooiste
aspecten van het promoveren gevonden. Ook waardeer ik het contact dat we naast het werk
hadden of nog steeds hebben. Bedankt!

Ik wil de leden van de verschillende D-commissies eveneens bedanken voor hun bijdrage:
Henk van den Beld† (CT), Ties Bos (CT), Herman Hemmes (TN), Hans Kuipers (CT), Sietse
van der Meulen (TN), Ruud Visscher (Parenco BV), Sjoerd de Vries (TO), Theo de Vries
(EL) en Jan Wattenberg (Parenco BV).

Mijn paranimfen Jan Jelle Sijbesma en Ralf Heijkants hebben mij met de laatste loodjes
geholpen. Jongens, bedankt dat jullie me bij willen staan. Ook wil ik iedereen van de vak-
groep bedanken voor de plezierige tijd de afgelopen jaren. Bartie, du wirst immer mein S¨uße
sein.

Tot slot wil ik mijn ouders bedanken voor hun onvoorwaardelijke steun. Hoewel jullie niet
altijd op de hoogte waren van waar ik me nu eigenlijk mee bezig hield, hebben jullie me
altijd gestimuleerd en de kans gegeven om verder te leren. Zonder jullie had ik dit niet
kunnen bereiken.
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Babuška, R. (1996). Fuzzy modeling and identification. Ph.d. thesis. Delft Technical Univer-
sity. Delft (The Netherlands).
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